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session was held at the beginning of the program where authors presented a brief summary of their work to all IGS2019 
attendees. 
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Abstract

We propose a half-kernel Laplacian operator (HLO) for feature-
preserving mesh denoising. We develop a half-window algo-
rithm to divide the neighborhood of each vertex into paired sub-
sets (half windows), and compute the discrete Laplacians with
uniform weights of all subsets. We determine the final half-
kernel Laplacian as the one incurring the least regularization
energy. To remove noise, we update vertices with the deter-
mined Laplacians in an iterative manner. Our approach, in-
volving a single parameter (i.e., the number of iterations for
vertex update), is conceptually simple and easy to implement.
We show that the proposed HLO can better preserve features
and avoid the shrinkage artifact than the uniform Laplacians.
Experiments demonstrate that our results are better or compa-
rable to the state-of-the-art techniques, in terms of visual ex-
amination and quantitative measure.

1 Introduction
Surface meshes acquired through scanning or sensing equip-
ment are inevitably contaminated with noise. These meshes
have to be processed with denoising techniques [4, 5, 3, 8, 9]
before applying to other fields like computer animation. The
main technical challenge of mesh denoising is preserving fea-
tures while removing noise and alleviating shrinkage. The de-
sign of robust mesh denoising methods is therefore particularly
needed in nowadays.

The discrete Laplacian operator on triangle meshes has been
proven highly useful in digital geometry processing, for exam-
ple, mesh fairing, surface parameterization, reconstruction and
editing [7, 1, 6]. The di↵erential surface representation en-
codes rich local information such as the mean curvature and
the orientation. Despite that the uniform Laplacian operator
can e↵ectively smooth surfaces, it fails to preserve features and
often leads to shrinkage. In this paper, we propose a novel, ro-
bust approach for feature-preserving mesh denoising. Our key
idea is to construct a “half-kernel” uniform Laplacian operator
(HLO) that can approximate the Laplacians at feature/non-
feature points using half windows. Given a noisy mesh as in-
put, our approach can automatically produce a quality feature-
preserved mesh without shrinkage.

Our method is conceptually simple and easy to implement,
since it involves a single parameter (i.e., the number of itera-
tions for vertex update). We demonstrate that the proposed
HLO substantially outperforms the uniform Laplacian in pre-
serving features and avoiding shrinkage. Experiments show
that our approach achieves comparable or better results to the
state-of-the-art mesh denoising techniques.

2 Methodology
The proposed operator is to use half windows to approximate
the Laplacians at vertices. To produce half windows, each of
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Figure 1: Half-kernel Laplacian on v0. (a) vA, the starting
neighbor of v0, is paired with the other unique neighbor vD
which has the shortest distance to the plane v0vAv

0
0. v00 is

the centroid of the neighbors. The line vAvD partitions the
neighborhood into the left and right half windows. (b) and (c):
d1 and d2 are computed by performing the uniform Laplacian
to the half windows. �1 and �2 are achieved by projecting d1
and d2 to the full-window uniform Laplacian, respectively.

the immediate neighboring vertex of the current vertex will be
paired with the other unique neighboring vertex to partition
the neighborhood into two half windows. The other unique
neighbor paired by the starting neighbor is determined as the
neighboring vertex which has the shortest distance to the plane
defined by the current vertex, the starting neighbor and the
centroid of the neighborhood. As illustrated in Fig. 1a, regard-
ing the current vertex v0, vD is chosen as the other unique
neighbor and paired with the starting neighbor vA. v00 is the
centroid of the neighborhood. As a result, each vertex vi and
its neighborhood has |NV (vi)| partition choices which further
generate 2|NV (vi)| subsets (half windows).

(a) (b) (c)

Figure 2: (a) Noisy bunny. (b) 1 iteration of vertex update with
projection. (c) 1 iteration of vertex update without projection.
Flipped triangles are rendered in red.

We apply the uniform Laplacian operator independently to
each of these subsets and compute half-kernel Laplacians for
each vertex vi. Directly using the half-kernel Lapalcians may
result in poor results such as degenerating and/or flipping
triangles (Fig. 2(c)). We thus project them onto the full-
kernel Laplacians to obtain the intermediate half-kernel Lapla-
cians. Fig. 1(b-c) shows two such examples. We can easily
enumerate all the intermediate half-kernel Laplacians for vi:
. . . , �L(vk), �R(vk), . . . . �L(vk) and �R(vk) respectively denote
the half-kernel Laplacians for the left subset and right subset
with the starting neighbor vk (2 NV (vi)). We next need to
determine the optimal Laplacian among the 2|NV (vi)| half-
kernel Laplacians. The optimal one will be selected based on
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the regularization energy [2]. In this work, we define the regu-
larization energy of each vertex as the sum of the norm of the
Laplacian and the the distance to the original vertex position,
shown as follows:

E(�ti) = k�tik+ kvti � v0i k, (2.1)
where �ti can be any among the calculated 2|NV (vi)| half-kernel
Laplacians in the t-th iteration. vti is the position of vertex vi
in the t-th iteration and v0i is the initial position of vi. The
first term represents the movement between two consecutive
iterations, and the second measures the distance between the
position at the t-th iteration and the initial position of vertex
vi. We compute the energy E for each half-kernel Laplacian of
vertex vi and select the optimal Laplacian that incurs the least
energy. The vertex position vt+1

i in the (t + 1)-th iteration is
updated by vti and the determined �ti in the t-th iteration.

vt+1
i = vti + �ti (2.2)

3 Results

Figure 3: Denoising results for (a) the uniform Laplacian oper-
ator and (b) the half-kernel Laplacian operator (HLO). From
left to right: The original noisy shape, the result after 1, 3, 5
and 15 iterations; The wedge labels the shrinking e↵ect caused
by the uniform Laplacian operator.

Fig. 3 compares our HLO with the uniform Laplacian. It
shows that HLO can better preserve features and resist shrink-
age than the uniform Laplacian. Fig. 4 shows the denoising
results of two synthetic models and a scanned model. The re-
sults demonstrate that our method is better or comparable to
state-of-the-art mesh denoising techniques.

4 Conclusion

We introduced a novel method for feature-preserving mesh
denosing. We developed a Half-kernel Laplacian operator
(HLO) which can e↵ectively preserve features and avoid the
shrinkage artifact. Experiments show that our approach
achieves comparable or better results (quality and quantity)
to state-of-the-art mesh denoising techniques.
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Abstract

Recently, 3D visual representations of highly deformable 3D

models, such as dynamic 3D meshes, are becoming popular

due to their capability to represent realistically the motion of

real-world objects/humans, paving the road for new and more

advanced immersive virtual, augmented and mixed reality ex-

periences. However, the real-time streaming of such models

introduces increasing challenges related to low cost, low-latency

and scalable coding (SC) of the acquired information. This ar-

ticle proposes an e�cient SC mechanism, that decomposes a

mesh sequence into spatial and temporal layers that remove a

single vertex at each layer. The removed vertices are predicted

by performing Laplacian interpolation (LI) of the motion vec-

tors. The artifacts that are introduced in low-resolution repre-

sentations are mitigated using a subspace based normal-vector

denoising procedure, that is optimized to support low-latency

streaming scenarios using incremental SVD (ISVD). Addition-

ally, a novel initialization strategy o↵ers robustness to outliers

generated due to local deformations.

1 Introduction

3D meshes are widely used in various applications in di↵erent
scientific fields from heritage science and education to health
and robotics. Recently, the interest in 3D mesh sequences has
also been increased because of the rapid growth of new 3D
scanning technologies, 3D cinema/television, and immersive
telepresence systems capable to provide VR/AR experiences.
Streaming of 3D animated objects can be used in applications
where the geometric data is live-captured and needs to be avail-
able in real-time. Nevertheless, these types of applications de-
mand the storage and the transmission of a huge amount of 3D
data. The real-time rendering of 3D models, representing either
real-world or synthetic objects, generates massive datasets and
it requires the use of e�cient and fast algorithms for increasing
the compression ratios without a↵ecting noticeably the visual
quality of the object. For this reason, various techniques on
dynamic 3D mesh processing should be developed to address
the growing demand and at the same time, to handle these
important challenges. Despite the fact that geometry data are
generally encoded in a lossy manner, SC seems to be the most
promising approach especially in cases where the network per-
formance is unstable. Additionally, a stringent latency is a
vital requirement for providing a pleasant immersive VR/AR
experience. This means that any real-transmitted dynamic 3D
mesh must be easily perceivable, at any frame of its sequence,
without a↵ecting its visual quality regardless if a decrease in
the transmission rate takes place at any moment. The main
purpose of low-latency applications is avoiding to disturb the
user’s perception because this can negatively a↵ect the quality

of the experience. In this work, we take into account all the
aforementioned challenges in order to develop a SC method for
reliable streaming of dynamic 3D meshes ideal for low-latency
streaming applications. Our research counts on the observa-
tion that a reduced frame of a mesh sequence can e�ciently be
reconstructed by taking advantage of the general spatiotem-
poral information of the entire animated mesh. The proposed
method is scalable, since a di↵erent number of points are trans-
mitted in each frame, depending on the network capability. To
summarize, the main contributions of this work are:

• We propose a mechanism for decomposing a mesh sequence
into layers that remove a single vertex at each layer. This
decomposition is based on (i) topological characteristics of
the mesh and (ii) the temporal behavior of each point sep-
arately as their position change through the time frames.
In this way, we remove vertices that can be predicted ac-
curately by their neighbors.

• We introduce a process for the online reconstruction of
the removed vertices per frames by exploiting coherences
on the subspaces corresponding to the di↵erent layered
representations of the corresponding normals.

• The final reconstructed model has the same number of ver-
tices as the original. Additionally, the method is totally
parameter-free and no modification or exhaustive search-
ing of ideal values are required.

2 Overview of our Method

Fig. 1 briefly presents the proposed framework, highlighting
the most important procedures of our approach. We start with
the layer decomposition process taking into account the spatial
and temporal information of the dynamic mesh. The output of
this process corresponds to the active points at the end of the
removal process. After the transmission, each reduced frame
is reconstructed. Firstly, we use a weighted LI approach, as a
coarse reconstruction process, in order to estimate the position
of the removed vertices. Then, we perform a fine estimation
step by tracking the normals subspace deviation between di↵er-
ent layers using ISVD, significantly reducing the required com-
plexity as compared to a conventional SVD based approach.
The convergence of this approach is significantly accelerated
using Robust PCA (RPCA) as an initialization procedure. Fi-
nally, each frame is fine-reconstructed penalizing displacement
of the vertices over a tangent plane perpendicular to the local
surface normal.

2.1 Layer Decomposition

For the SC of a mesh sequence, we propose a spatiotemporal
layer decomposition algorithm [1], which removes the vertices
of a mesh taking into account both topological and temporal
criteria. We assume that only one vertex is removed at each
layer so that k spatial layers are created. We annotate as M1

1
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Figure 1: The pipeline of the proposed method.

the set of points of the layer 1 which has only one vertex while
in the highest layer k there is the set of points Mk consisting
of k vertices. The relation between the set of points Ml and
the exactly previous set Ml�1 can be described as:

Ml = Ml�1 [ {v} (2.1)

where Ml ✓ M 8 l = 2 · · · k. The decomposition process is
repeated k times until only one vertex will have remained in
layer 1. At each layer, we remove this specific vertex which
can be e�ciently predicted by the reconstruction process. The
proposed cost function consists of two terms, namely the spatial
Cs and the temporal Ct:

C(i, l) = Cs(i, l) + �Ct(i) (2.2)

where � = 0.1. The removed vertex vl at layer l is given by:

vl = argmin
v2Ml

C(i, l) (2.3)

where C(i, l) is the removal cost of vertex i at layer l.

2.1.1 Vertex Removal Using Topology Information

The spatial term Cs is related to the geometry of the first frame
and it is estimated as follows. We define as Rj(i) the set of the
j-ring neighbors of the i vertex and the R̂j(i, l) as a subset of
Rj(i) with the remaining j-ring neighbors of i vertex in the l
level. The spatial term Cs is estimated as:

Cs(i, l) =
3X

j=1

|Rj(i)|� |R̂j(i, l)|
|Rj(i)|

⇢j (2.4)

where |.| operator returns the number of elements in a set and
⇢ is a positive parameter.

2.1.2 Vertex Removal Using Temporal Information

Generally, a stationary or slow-motioned point is more likely to
be accurately predicted. On the other hand, highly deformable
surface patches are less accurately predictable. According to
this observation, we propose the use of the temporal term Ct

that exploits the temporal information from frame to frame,
taking into account the mean motion vector of each point:

Ct(i) =

Pn
t=2 kvi(t)� vi(t� 1)k2

n
8 i = 1 · · · k (2.5)

where (t) represents the current frame while the (t-1) represents
the previous frame.

2.2 Coarse Reconstruction via LI

2.2.1 Weighted Graph Laplacian Matrix

The binary Laplacian matrix provides information regarding
the connectivity of vertices. In order to set the preferable con-
straints, we construct a modified weighted Laplacian matrix,
similar to [3], that takes into account the two following fac-
tors H and B. Parameter H is related to the distance between
connected vertices according to:

Hij =

⇢ 1
kvi(t�1)�vj(t�1)k2

if j 2 R1(i)

0 otherwise
8 i = 1 · · · k (2.6)

For the estimation of this parameter, the values of the ver-
tices from the previously reconstructed frame (t� 1) are used.
Parameter B is related to the connecting proximity b (degree
or topological distance) of an unknown vertex with an already
known vertex. The initial known vertices have a value equal to
4 (reinforcing the contribution of the known values), while the
value of the unknown vertices depends on their connectivity
degree b, as shown in the following equation:

Bij =

(
4Aij if vi is known
Aij

b+1 otherwise
8 i, j = 1 · · · k (2.7)

where A is the binary adjacency matrix. Finally, the weighted
adjacency matrix Aw is estimated according to:

Aw = H �B �A (2.8)

where � denotes the Hadamard product. Then, the weighted
Laplacian matrix is estimated according to:

Lw = D�Aw (2.9)

where D = diag{D1, . . . , Dk} is a diagonal matrix with Di =Pk
j=1 Awij .

2.2.2 Weighted Laplacian Interpolation

We follow the same line of thought with [9] but applying it on
the motion vectors � [2] of the vertices instead of the vertices
directly.

�i = [�xi, �yi, �zi]
|

8
<

:

�xi = |vxi(t)� vxi(t� 1)|
�yi = |vyi(t)� vyi(t� 1)|
�zi = |vzi(t)� vzi(t� 1)|

8 i = 1 · · · k

(2.10)
Additionally, we use the estimated weighted Laplacian matrix
Lw of Eq. (2.9) which encloses all the necessary constraints for
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an e�cient weighted Laplacian interpolation. We also define
d = [�1 �2 · · · �k] 2 Rk⇥3 the matrix which represents the
motion vectors of each vertex of the mesh. The Laplacian of
d is written as: �� = Lwd. Next, we split the d into two
parts: dk 2 Rk0⇥3 containing the motion vectors of known
vertices and du 2 Rk�k0⇥3 containing zeros because of the
unspecified values of the unknown vertices. Please note that
k�k0 is equal to the decomposition layer. Correspondingly, the

Lw can be partitioned into four parts: Lw =
⇣
Lw11 Lw12
Lw21 Lw22

⌘
,

Lw11 2 Rk0⇥k0
, Lw12 2 Rk0⇥k�k0

, Lw21 2 Rk�k0⇥k0
,

Lw22 2 Rk�k0⇥k�k0
. The Euclidean norm |��| is minimized:

����

✓
Lw11 Lw12

Lw21 Lw22

◆✓
dk

du

◆���� =

����

✓
Lw11

Lw21

◆
dk +

✓
Lw12

Lw22

◆
du

����
(2.11)

By solving this system we estimate the unknown motion vectors
du. The coordinates of the missing vertices are estimated by
updating their position using the estimated du.

vu(t) = vu(t� 1) + du, 8 t = 2 · · ·n (2.12)

Finally, all vertices of the incomplete frame (t) are known
v(t) = vk(t) [ vu(t) where vk = [vk1 · · ·vkk0 ] and vu =
[vuk0+1 · · ·vuk�k0 ].

2.3 Online SC Using Fine Reconstruction

The previously presented coarse reconstructed step demon-
strates impressive performance. However, in cases where the
SC is responsible for highly incomplete frames > 60%, the noise
can be apparent in some areas (e.g., nonrigid areas, areas with
high motion between consecutive frames). To remove these
abnormalities, the following fine reconstruction step is utilized.

2.3.1 Initialization Strategy via RPCA

For the denoising of the first n̄ frames, we follow a batch ap-
proach in order to exploit more e↵ectively their coherence us-
ing RPCA. We initially create a spatiotemporal matrix E 2
Rkf⇥3n̄ according to:

E =

2

6664

nc1(1) nc1(2) . . . nc1(n̄)
nc2(1) nc2(2) . . . nc2(n̄)

...
...

. . .
...

nck(1) nck(2) . . . nck(n̄)

3

7775
(2.13)

where n̄ ⌧ n and nci(n̄) = [ncxi(n̄); ncyi
(n̄); nczi(n̄)] repre-

sents the ith centroid normal of n̄th frame. The matrix E may
be decomposed as: E = S + N where S is a low-rank matrix
representing the real data while N is a sparse matrix repre-
senting the space where the noise lies. The low-rank matrix S
can be recovered by solving the following convex optimization
problem [7]:

minimize kSk⇤ + �kNk1, subject to S+N = E (2.14)

where kSk⇤ denotes the nuclear norm of the matrix which is
the sum of the singular values of S. Then we use the elements
of the low-rank matrix S to refine the n̄ meshes updating the
positions of their vertices.

2.3.2 Online Refining using ISVD

The initialization strategy is applied once (i.e., only for the
patch of the first n̄ noisy frames), then we use the knowl-
edge of the reconstructed frames in order to estimate the de-
noised normals of any new presented frame, using an incre-
mental approach. The SVD updating algorithm [11], [6], pro-
vides an e�cient way to carry out the SVD of a larger matrix

[Skf⇥3n̄,Bkf⇥3r], where B is an kf ⇥ 3r matrix consisting of
the kf centroid normals of the r additional frames. The ma-
trix S is an already low-rank matrix consisting of the denoised
normals of the n̄ previous frames. Specifically, for the normal’s
estimation of the n̄ + 1 frame, the matrix S is used, while for
any frame > n̄ + 2 the matrix S is updated as shown in Eq.
(2.18). The r  n̄ represents the number of the observed noisy
frames on which we want to estimate the denoised normals. By
exploiting the orthonormal properties and block structure, the
SVD computation of [S,B] can be e�ciently carried out by us-
ing the smaller matrices, Uq,Vq, and the SVD of the smaller

matrix
h
⇤q UT

q B
0 R

i
. Firstly, we apply a qr(.) decomposition of

the (I�UqU
T
q )B in order to estimate the matrices Q and R:

QR = qr((I�UqU
T
q )B) (2.15)

Next, we obtain the q-rank SVD of the (q+ r)⇥ (q+ r) matrix:

⇤q UT

q B
0 R

�
= Û⇤̂V̂T (2.16)

where r0 is the rank of (I � UqU
T
q )B. Then, the best q-rank

approximation of [S,B] is:

[S,B] = ([Uq,Q]Û)⇤̂(


Vq 0
0 I

�
V̂)T (2.17)

Finally, the matrix B obtains the denoised normals of the new
frame which will be used to update the vetrices. Matrix S will
be updated, by a left shifting operation denoting as 7!, in order
to obtain the most recent information for more e�cient online
estimation of the denoised normals of the next frame:

S : (ṅc1, ṅc2, · · · , ṅc(n̄�1), ṅcn̄) 7! (ṅc2, ṅc3, · · · , ṅcn̄, B)
(2.18)

where ṅci represents the ith row of matrix S.

2.4 Ideal Normals for Vertex Updating

We assume that some points are more reliable than others.
Two parameters a↵ect mostly the classification of a point as
trustable or not. The first one is (i) the rigidness �(i) of the
area (first-ring) where a point lies and the second is (ii) the
total distance �i that a point covers through the frames. The
criterion that is used for the characterization of a point as rigid
or not depends on the percentage change of its first-ring area
between two consecutive frames and it is described as:

�(i) =

(
1 if |area(i,l)�area(i,l�1)|

max(area(i,l),area(i,l�1)) > 1%

0 otherwise
(2.19)

where area(i, l) is the first-ring area of point i as it appears
in the l frame and �(i) = 1 means that the i point needs to
be updated for more accurate results. Regarding to the second
parameter, the temporal factor Ct is used, as it has been defined
in Eq. (2.5), giving emphasis to the known and less moving
points. Additionally, in order to make the process more time
e�cient, the known points included in the Ml set, are excluded
from the updating process. The fine-tuned normals are then
used to update the vertices according to [10]:

v
(e+1)
i = v

(e)
i +

P
j2 i

�j n̄cj(hn̄cj , (c
(e)
j � v

(e)
i )i)

| i|
8 i 62 Ml, �(i) = 1

(2.20)

�i =

⇢
4Ct(i) if vi is known
Ct(i) otherwise

(2.21)

c(e+1)
j = (v(e+1)

j1 + v(e+1)
j2 + v(e+1)

j3 )/3 8 j 2  i (2.22)

where ha,bi represents the dot product of a and b, (e) rep-
resents the number of iteration and matrix  i is the cell of
vertices that are directly connected with the vertex vi.
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Figure 2: [Up] KG error of the reconstructed results, [Down]
Heatmap visualizing the ✓ metric per face in di↵erent colors.
(a) Original mesh and reconstructed using: (b) EFSCA [1], (c)
the lifting approach of the FAMC method [8], (d) the DCT
approach of the FAMC method [8], (e) our approach.

3 Experimental Analysis and Case Study

The results of the proposed method are compared with: (a) A
layer decomposition approach using an E�cient Fine-granular
Scalable Coding Algorithm (EFSCA) [1] and (b) The Frame-
based Animated Mesh Compression (FAMC) method [8]. To
simulate variable bandwidth capabilities and adjust rates for
chunks we separate the whole animation in blocks-of-frames
(e.g., 10 frames per block) and at any block, a di↵erent bpvf
is used. In Fig. 2-[Up], we present comparisons between our
method and others using di↵erent rates of bpvf. For the eval-
uation we use the KG error metric. In Fig. 2-[Down], we
present the heatmap visualization of ✓ metric for di↵erent re-
constructed models. Additionally, we provide the mean ✓ of
each frame for the di↵erent approaches, as well as enlarged
detail of the reconstructed models for easier comparison.

Lung diseases a↵ect the daily routine and the quality of life
of many people. Recently, 3D animated simulation of the pa-
tient’s respiration system has been used by medical experts for
a personalized and online observation of their patients’ lungs
functionality [5, 4], utilizing this approach as a tool for primary
diagnosis. Fig. 3 presents an example of a 3D animated model1

in two di↵erent respiratory situations (i.e., exhale and inhale).

4 Conclusions

This work presents an e�cient approach for online SC of dy-
namic 3D meshes. This method is totally parameter-free and
it can be used without further changes or extra parameteri-
zation. A significant advantage of the proposed method is its
ability to transmit di↵erent bpv per each frame depending on
the instant network’s capability. Additionally, the selection of

1sketchfab
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Figure 3: 3D animated lung in di↵erent views.

the transmitted vertices is optimized, taking into account both
the spatial and temporal information. This gives an extra ben-
efit to the reconstruction process to handle more e�ciently the
received vertices providing more accurate results.
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Abstract

A ship hull consists of complicated doubly curved surfaces par-
ticularly at the bow and stern. In shipbuilding, surface plates
are formed by the mixture of cold and hot bending, which is
typically called line heating. An e�cient plate forming method
based on the lines of curvature has recently garnered the atten-
tion of researchers. However, the method su↵ers if the lines
of curvature are wavy, or pass near the umbilical points. We
herein propose novel methods for smoothing the lines of cur-
vature and sweeping out the umbilics from each partitioned
plate by deforming the surface within the prescribed deviation
from the designed surface based on nonlinear optimization. We
demonstrated the e↵ectiveness of our proposed method by ap-
plying it to the bow of a bulk carrier, which was provided by a
shipbuilding yard.

1 Introduction

In shipbuilding, exterior steel plates are formed using two ma-
jor steps. First, a flat steel plate is press bent through cold
bending to provide a rough bend. Thereafter, the plate is con-
tracted locally using hot bending, a process known as line heat-
ing, to form the plate into the desired three-dimensional shape.

Lines of curvature are a set of curves on a surface whose
tangent at each point is in the principal direction, and possess
various interesting geometric characteristics [7]. Many studies
on the design and manufacturing of shapes fully utilizing the
curvature characteristics have been developed recently [3, 9].
Among them, an e�cient method for the forming of ship hull
plates based on the lines of curvature was proposed [5, 3] (see
Fig. 1). This method allows only expansion to occur along the
lines of the curvature when unfolding an input surface onto a
plane. Hence, the manufacturer can determine the initial shape
of the plate to be cut, specify the pressing direction and angles,
and estimate the amount of contraction required to form the
shape using line heating.

(a)
(b)

Figure 1: LoC-based plate forming (adapted from [3]): (a)
Cold bending by pressing along the line of curvature with a
smaller magnitude of curvature (blue line). (b) Line heating
using local heat treatment along the line of curvature with a
larger magnitude of curvature (red line).

Lines of curvature are generally more sensitive to surface
irregularities than the first-order interrogation tools, such as
zebra mapping, reflection lines and so on. Therefore, the input
surface must be su�ciently fair to obtain a smooth flow of lines
of curvature, as shown in Fig. 2 (a). In addition, the existence
of umbilics, which are the singularities of the lines of curvature,
destroys the nice orthogonal net of the lines of curvature and
induces sharp turns, as illustrated in Fig. 2 (b). These two
facts render the application of lines-of-curvature (LOC)-based
pressing and line heating for plate forming di�cult to achieve.

We herein propose novel methods for removing these two
obstacles when forming plates through LoC-based pressing and
line heating. The primary contributions of this paper are as
follows:

• We propose an interactive method for smoothing the prin-
cipal direction fields within the parameter space using
Gaussian filtering as a preprocessing step for smoothing
the lines of curvature.

• We modify the input B-spline surface based on the
smoothed principal direction fields based on optimization.

• We sweep out the umbilical point from the surface bound-
ary such that the umbilics are not inside the plate.

2 Related work

2.1 LoC-based plate forming

Matsuo and Matsuoka [5] introduced a plate forming-method
based on the lines of curvature of the plate surfaces. The key
idea is that the surface is bent the most along the lines of
curvature; hence, they indicate the directions for bending. The
authors flatten doubly curved plates onto a plane by utilizing
the fact that the geodesic curvature along a line of curvature
exhibits the same curvature as that of a flattened curve. In
other words, a line of curvature can be considered as an edge
of a developable surface formed using a vector orthogonal to
both the surface normal and tangent of the line of curvature.
Accordingly, it can be developed onto a plane based on the
fact that curves on isometric surfaces exhibit the same geodesic
curvature at the corresponding points [3].

2.2 Fairing

To apply LoC-based plate forming, the input surface must ex-
hibit a smooth flow of lines of curvature. Numerous studies
have been conducted on the smoothing of B-spline surfaces.
Two typical approaches exist for creating fair B-spline surfaces
[2]: (1) fitting surfaces with fairing terms (e.g., [1]) and (2)
post-processing (e.g., [2, 4]). Our fairing method belongs to
the second category. Various post-processing surface fairing
methods have been described in the literature. For example,
Kawasaki et al. [4] proposed a method for fairing surfaces while
maintaining the characteristic shapes, such as sharp edges,
based on a normal map image of the surface. This approach is
a first-order interrogation tool.

1



(a) (b)

Figure 2: Two issues that render the applications of LoC-based plate forming di�cult: (a) smoothing the flow of lines of curvature
(upper images), where curvature plots along iso-parametric curves are smoothed as a byproduct (lower images), and (b) sweeping
out an umbilical point indicated by the black point where the upper images are in 3D geometry and the lower images are the
pre-images (model: plate A).

In the present study, we introduce a method for smoothing
the flow of curvature lines by smoothing the principal direction
fields within the parameter space.

3 Control of lines of curvature based on prin-
cipal direction fields

3.1 Smoothing of principal direction fields

At each non-umbilical point, two principal directions exist that
are orthogonal; hence, the lines of curvature form an orthog-
onal net of lines. However, the corresponding two principal
directions in the parameter space are generally not orthogonal.
We evaluate the principal directions at each uniform grid point
within the uv-parameter space of the B-spline surface.

According to [11], the principal directions in the parameter
space can be categorized as “two independent pairs of directions
with ⇡ rotationally symmetric within each pair.” Therefore,
each principal direction generates an independent line field.
The angle of the line in parameter space  with respect to
the u axis is defined within the range �⇡

2 <   ⇡
2 .

We subsequently apply Gaussian filtering interactively to the
regions where the principal direction fields are not smooth.
Gaussian filtering is a technique used in image processing to
smooth images and remove noises [10]. Let us denote the angle
of the principal direction at the grid point p in the uv space as
 p, and at its neighboring points q 2 N(p) as  q. The angle
of the principal direction is updated iteratively using Gaussian
filtering as follows:

 (k+1)
p =  (k)

p +� (k)
p , (3.1)

where the superscript (k) denotes the k-th iteration, and � (k)
p

is defined as

� (k)
p =

P
q2N(p) W (||p� q||)( (k)

q �  (k)
p )

P
q2N(p) W (||p� q||) , (3.2)

where �⇡
2   (k)

q �  (k)
p  ⇡

2 and ||x|| denotes the Euclidean

norm. The weight W (d) = e�d2/2�2
is the Gaussian distri-

bution function with � being the standard deviation of the
Gaussian distribution determined by the user. The filter size

in the principal direction evaluation points, which is the neigh-
borhood considered for filtering, is determined by the user.

We apply a Gaussian filter to either the maximum or mini-
mum principal direction. If one of the directions is filtered, the
other direction is determined automatically from the property
in which the two principal directions are orthogonal to each
other within the geometry space. In this study, we chose the
minimum principal direction, although the maximum principal
direction can be applied without a↵ecting the outcome.

3.2 Visualization of smoothed principal direction
fields

We discuss the smoothing of the principal direction fields such
that the lines of curvature, which are integral curves for the
principal direction fields, become smooth. We introduce the
so-called approximated LoC in the parameter space to verify
the smoothness of the principal direction fields. Tracing the
approximated LoC is given as the initial value problem, us-
ing standard numerical techniques such as the Runge-Kutta
method. The angle in uv space is interpolated by smoothed
principal directions.

3.3 Reflecting modified principal direction fields
onto the input surface

We consider the energy functional F , which consists of a lin-
ear combination of three separate energy functions, to optimize
the shape of the surface based on the principal direction fields.
Let R=(r1, r2, ..., rN ) be the selected components of the con-
trol points of the input B-spline surface that will be modified
through the smoothing process. The energy functional F is
given as follows:

F (r1, r2, ..., rN ) = Fd + wpFp + wfFf (3.3)

where wp and wf are the weighting factors for each energy term
defined by the user. The first term ensures that the new control
points Pij do not deviate significantly from the original control
points P̄ij :

Fd =
mX

i=0

nX

j=0

||Pij � P̄ij ||2 , (3.4)

where (m+ 1) and (n+ 1) are the number of control points in
the u and v directions, respectively. The second term ensures
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that the principal directions in the parameter space,  max and
 min of the optimized surface, match those of the smoothed
surfaces,  ̄max and  ̄min, as much as possible:

Fp =
MX

i=0

( max i �  ̄max i)
2 + ( min i �  ̄min i)

2 , (3.5)

�⇡
2   max i �  ̄max i  ⇡

2 and �⇡
2   min i �  ̄min i  ⇡

2 ,
and (M +1) is the number of sampling points. The third term
Ff is defined as

Ff =

Z ✓
dmax

demax

◆2

+

✓
dmin

demin

◆2

dA , (3.6)

which minimizes the variation in curvature rather than its mag-
nitude; thus, the resulting surface is referred to as the minimum
variation surface [6]. Eq. (3.6) evaluates the area integral of
the sum of the squared magnitudes of the derivatives of the
normal curvatures from the corresponding smoothed principal
directions. The unit vectors emax and emin are the smoothed
maximum and minimum principal directions at the evaluated
points, respectively.

To minimize the objective function in Eq. (3.3), we used
the bound optimization by quadratic approximation (BOBYQA)
method ([8] of the Numerical Algorithms Group program, NAG
Mark26.1 CLW32261EL e04jcc).

3.4 Sweeping out of umbilics from surface bound-
aries

If umbilical points exist near the four edges of the plate, our
strategy is to sweep them out from the nearest boundary using
the techniques described in Section 3.1.

4 Results

We apply our algorithms to the bow surface of a bulk carrier
of length 278 m, which is provided by a shipbuilding yard.

4.1 Smoothing of curvature lines

The upper and lower rows of Fig. 3 depict the curvature lines
before and after the application of smoothing, respectively. If
we use a large � of the Gaussian function to smooth the en-
tire domain, the flow of the lines of curvature may change sig-
nificantly. Accordingly, we applied Gaussian filtering through
three steps.

As shown in the lower row of Fig. 3, the flow of the curva-
ture lines becomes smoother and the zebra mapping achieves a
higher quality. Using our method, we improved the fairness of
the hull surface and smoothed the flow of the curvature lines si-
multaneously. Based on practical experience, we observed that
the choice of weights wp and wf a↵ects the surface deformation
significantly. To maintain the deformation within 0.05% of the
ship length, we used wp = 5.0 and wf = 2.0 for the computa-
tion of the bow surface. The maximum deformation is 101 mm,
which is within the allowable deformation. The computational
time for the bow surface model required approximately 40 min
owing to the relatively large number of variables used in the
optimization, namely, 378.

4.2 Sweeping out of umbilics from surface bound-
aries

Three umbilics were detected in the bow surface. The bow
surface was partitioned into 28 manufacturable quadrilateral
plates such that the three umbilics were located near the plate
boundaries (see Fig. 4). Because plate surfaces A, B, and
C are trimmed surfaces, we fit an accurate plate surface from

the dense points extracted from each trimmed surface. We
subsequently applied Gaussian filtering to the boundary regions
of the plate surface where the umbilical points exist to sweep
them out. The computational results of surface optimization
are illustrated in Figs. 2 (b) and 5. The maximum distance
deviation from the trimmed surface caused by the sweeping out
of the umbilics was 1.0 mm or less in all three cases, which is
negligible considering that the hull plate is formed manually by
craftsmen.

5 Conclusion

We introduced a method for smoothing the lines of curvature
through smoothing the principal direction fields. Furthermore,
we provided a method to sweep out the umbilics from the par-
titioned quadrilateral plates such that the proposed LoC-based
plate-forming method can be applied practically to actual ship-
building. Although we applied these techniques to shipbuild-
ing, they can be applied easily to other engineering fields.

The limitations of the proposed method are as follows:

• If umbilical points exist stably at the center of the surface,
such points cannot be swept out to the surface boundary
under a small amount of deformation.

• When an input principal direction field cannot be real-
ized geometrically, such as when the boundary curves are
restrained, the surface cannot be corrected into a shape
satisfying the input principal direction field.

In the future, we plan to form ship plates in a shipyard based
on the developments of our proposed method.
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Figure 3: Bow surface optimization: Upper row, before optimization; lower row, after optimization. Left-to-right: Lines of
curvature in the parameter space, lines of curvature in the geometry space, close-up view, and zebra mapping.
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Abstract

We present a method for detecting from scattered data discon-

tinuities and gradient discontinuities, that is, faults and gra-

dient faults, respectively. Our approach consists of using new

fault indicators which allow to detect clouds of points enclosing

the faults, which can be used to reconstruct the shape of the

fault curves. The fault indicators are based on recently intro-

duced minimal numerical di↵erentiation formulas for gradient

or Laplacian on irregular centers, which eliminates the need for

any intermediate gridding of the data. The choice of our indi-

cators is motivated by their theoretical properties: their asymp-

totic behavior when the spacing between the data sites goes to

zero is related to the presence of discontinuities. A selection of

numerical examples illustrates the performance of the method

and highlights its potential range of application.

1 Discontinuity curves: faults and gradient
faults

Let ⌦ ⇢ R2 and let f be a smooth function in ⌦ \ (FO [ FG),
where both FO and FG are unions of curves such that f is dis-
continuous at points x 2 FO and its gradient is discontinuous
at x 2 FG. We call the curves composing FO and FG ordinary
faults and gradient faults, respectively.

Given a set of scattered points X ⇢ ⌦ with associated func-
tion values f(x) for each x 2 X, we are interested in de-
tecting the ordinary and gradient faults of f . This problem
has been extensively investigated in the literature (see, e.g.,
[1, 2, 4, 5, 8]).

Figure 1: A test example of surface with an ordinary and a
gradient fault and the set of scattered data (black dots).

2 Fault detection

We define two indicators, Ir and I�:

Ir(x, Nr
x ) :=

k
P

xj2Nr
x

¯̄wjf(xj)k2
��P

xj2Nr
x
| ¯̄wj |kxj � xk2

��
2

, (2.1)

I�(x, N�
x ) :=

|
P

xj2N�
x

¯̄wjf(xj)|
P

xj2N�
x
| ¯̄wj |kxj � xk22

, (2.2)

where Nr
x , N�

x ⇢ X are local subsets including x and the ¯̄wj

and ¯̄wj are the weights of minimal numerical di↵erentiation
formulas [6] for gradient and Laplacian operators, respectively.

Theorem 1 The indicator Ir(x, Nr
x ) (I�(x, N�

x )) is bounded
for Nr

x \ FO = ; (N�
x \ (FO [ FG) = ;).

Theorem 2 Let {xn 2 ⌦}n=1,...,1 such that limn!1 xn =
xO 2 FO. If the corresponding Nr

xn are local subsets of X
sharing the same geometry, with diameter converging to 0 and

containing points on both sides of an ordinary fault, then

lim
n!1

Ir(xn, N
r
xn) = 1.

If limn!1 xn = xF 2 FO [FG, analogous assumptions on the

N�
xn imply

lim
n!1

I�(xn, N
�
xn) = 1.

More details (about ordinary fault detection) can be found
available in [3].

These two theorems suggest the following detection criteria:

• mark x 2 X as close to a fault if I�(x) > ↵G,

• mark x 2 X as close to an ordinary fault if I�(x) > ↵G

and I�(x) > ↵O,

• mark x 2 X as close to a gradient fault if I�(x) > ↵G and
I�(x)  ↵O,

where ↵G = CG · median({I�(x) : x 2 X}) and ↵O =
CO · median({Ir(x) : x 2 X}), for suitably chosen constants
CG and CO. In the case of surfaces with large (almost) flat
areas, the medians are very close to 0, and so all points in non-
flat areas are detected. Applying the same detection criteria
twice allows to properly find the real fault points.

Figure 2 shows the detection of fault points from the data of
Figure 1. The red and blue colors correspond to ordinary and
gradient fault, respectively.

If necessary, the resulting cloud of points can be employed to
reconstruct curves approximating the faults. In Figure an ex-
ample of fault reconstruction from the detected data of Figure 2
is shown: we used an approach based on the computation of lo-
cal least squares approximations (see [9, 10]) to “narrow” the
point clouds, and then we approximated the obtained points
with a suitable cubic spline.

1



Figure 2: Detected ordinary fault (red) and gradient fault
(blue) points from the set of scattered data of Figure 1, com-
pared with the exact fault curves (black lines).

This approach can be also generalized to surfaces without
a parametrization of type S(x) = (x, f(x)). Let the data be
a set of points Z ⇢ R3 belonging to a surface S which is G2

except for a finite number of curves, where it is G0. We assume
that for each z there exist a plane ⇡z and fz : ⇡z ! R such
that in a neighbourhood of z the surface S can be seen as the
graph of fz. The curves along which S is G0 correspond to the
gradient faults of the functions fz, and then we can locally use
the indicator I� to detect them. In practice, ⇡z is determined
by principal component analysis on a suitable local subset of
data Nz, while fz(x) is the length of the segment joining x and
the intersection between S and the normal to ⇡z through x, for
any x 2 ⇡z.

3 Applications

The detection of discontinuities is a common problem arising
in several applications, ranging from 2D and 3D edge detection
in computer graphics to the automatic extraction of features
from geophysical data. We present two examples highlighting
the potential of our method in these applications.

3.1 Faults in geophysics

Rift areas are characterized by the extension of the crust and
of the litoshpere, and they typically show the presence of faults
and fractures (see, e.g., [7]). These features can be considered
as ordinary faults, which our method is able to detect (see
Figure 5).

Note that in some areas, the detected points may determine a
“fault area” rather than a “fault curve”, which corresponds to
a wide fracture. For this reason, no fault curve is reconstructed
in this case, since it would mean losing information about the
width of the fault area.

3.2 Edge detection

Extracting sharp features, and in particular detecting edges, is
a very important task in the context of 3D surface reconstruc-
tion for reverse engineering, industrial design and prototyping
(see, e.g., [11, 12]). From a mathematical point of view, this
problem corresponds to detecting the curves along which a con-
tinuous surface is only G0, which makes it a natural application

Figure 3: Final reconstruction of the two faults (blue and red
lines) from the detected points of Figure 2, compared with the
exact fault curves (black lines).

for our method. In Figure 6 we show the result of the appli-
cation of our method to the well-known fandisk benchmark
model.

4 Conclusions

We defined a fault and gradient fault detection method based
on indicators derived from minimal di↵erentiation formulas for
scattered data. The algorithm is supported by the theoretical
analysis of the indicators’ behaviour, which can be generalized
and applied to a wide range of topics, including geophysics and
engineering and computer graphics. The indicators can be also
potentially extended, by using higher-order minimal di↵erential
formulas, to detect higher-order discontinuities.
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Abstract

We introduce EdgeNet, a metric learning architecture for ex-

tracting semantic local shape features, directly applicable to a

wide range of shape analysis applications such as point match-

ing, object classification, shape segmentation, and partial reg-

istration. EdgeNet is based on a novel technique to keep edge-

wise correspondences in the deep feature space and encodes the

local structure into the learned features. It is trained under

the supervision of edge-wise correspondences by using the 3D

coordinates. The training loss combines a bi-triplet loss to en-

force feature variations between the semantic matching points

in the feature space, a transformation loss to encourage con-

sistency between corresponding edges after alignment transfor-

mation, and a smoothness loss guarantees the flatness between

the nearest points in the feature space. The learned features are

proved to encode local content, structure, and asymmetry for

3D shapes. Our network can be adapted to either 3D meshes

or point clouds. We compare the performance of the EdgeNet

with existing state-of-the-art approaches and demonstrate the

e�ciency and e�cacy of EdgeNet in three shape analysis tasks,

including shape segmentation, partial matching, and shape re-

trieval.

1 INTRODUCTION

Shape features or descriptors, which map a shape, either lo-
cally or globally, into multi-dimensional vectors, play impor-
tant roles in understanding and analyzing 3D models in var-
ious high-level tasks in geometry processing, such as shape
correspondence [9], labeling [6], and retrieval [2]. Typically,
shape features should be discriminative (capturing distinctive
attributes), robust (invariant with respect to parts missing
or noise), asymmetric (sensitive to reflective symmetry), and
computationally-e�cient.

We found that two adjacent patches should have similar fea-
tures in the deep feature space since they probably belong to
the same semantic parts. Based on these observations, our
key concept is to maintain edge-wise correspondences in fea-
ture space and also encode local spatial relations in the learned
features, thus resulting in more robust and discriminative fea-
tures. To this end, we design a novel deep metric learning
architecture, called EdgeNet, which seeks to preserve feature
similarities and spatial relations for all edge pairs in the learned
feature space. Figure 1 shows several experimental results.

Contributions. The contributions of our method are summa-
rized in the following:

• A new metric learning architecture, EdgeNet, is pro-
posed for structure-aware local feature learning. It can
be adapted for 3D meshes or point clouds.

• An end-to-end feature extractor, PatchNet, is designed to
compute local context-, and global position-aware features.

Figure 1: We propose a deep metric learning architecture which
learns local shape features in an end-to-end setting. Our deep
features can be used in a wide range of shape analysis applica-
tions, including (a) shape correspondence, (b) shape segmenta-
tion, (c) partial matching, (d) shape retrieval. Corresponding
points in (a) and (c) or parts in (b) have the same RGB color.

• A novel context-, structure-, and asymmetry-aware local
feature is learned for 3D shapes, which can be directly used
in a variety of shape understanding applications.

2 OVERVIEW

We will elaborate our EdgeNet (Figure 2) in detail. It encodes
the relative relationships into the learned features under the
supervision of edge-wise correspondences.

Input dataset. The input to our method is 3D shapes, which
could be either rigid, such as airplane, chair, or motorbike from
the corresponding benchmark [5], or non-rigid human FAUST
dataset [1]. For each category in the dataset, all shapes are nor-
malized to unit biharmonic distance diameter and have same
number of uniformly sampled vertices in correspondence.

Problem. Our goal is to find a mapping f that takes as input
any vertex p of a 3D shape and computes a feature (descriptor)
Dp 2 Rd in some d dimensional space for that point (we set
d = 128 in our implementation). The function is designed
such that features of corresponding points across shapes are
as close as possible to each other in Rd and features of non-
corresponding points across shapes are away over a minimal
constant gap to each other.

Local patches. We directly use the (x, y, z) coordinates of
each vertex, according to the frame of the bounding box of the
shape as shown in Figure 4, as its channels.

For each vertex pi on a 3D shape, we learn local feature from
its neighborhood points instead of itself only. Thus, we define
a local patch Pi = {pij , j = 0, 1, ..., N} with N points (N = 120
by default) where the N points are uniformly sampled from
the surface region around pi within a biharmonic distance r
(r = 0.025 by default), as shown in Figure 4. The coordinates
of vertices in Pi are translated into the local frame centered at
pi.

In order to encode the global information, we use the coor-
dinates of pi as the global location of Pi.

PatchNet. We design an end-to-end deep network as feature
extractor, called PatchNet, to map pi into its feature vector in
Rd, as shown in Figure 3.
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Figure 2: EdgeNet architecture. EdgeNet is composed of two
triplet network branches. Each triplet consists of three Patch-
Nets (Figure 3). The six PatchNet share the same parameters.
(a) Local patch of each point is the input of PatchNet. Here
superscript ’+’ denotes a corresponding point and ’-’ denotes
a non-corresponding point. There is an edge between a and b,
and similarly to a+ and b+. (b) EdgeNet is trained by using
the combination of the bi-triplet loss, the smoothness loss and
the transformation loss.

It is consisted of two sub-networks. The first sub-network,
called local patch encoder (in green), takes as input the co-
ordinates of all points in Pi and extracts a feature vector in
Rd/2 encoding the local context of pi. The second sub-network,
called global location encoder (in blue), takes as input the coor-
dinates of pi and extracts a feature vector in Rd/2 encoding the
global information of pi. Then we concatenate the two repre-
sentations generated by the sub-networks as the feature vector
Dp 2 Rd of pi.

All PatchNets for each vertex pi share the same weight pa-
rameters, which will be trained by our EdgeNet.

EdgeNet. The architecture of our EdgeNet is depicted in
Figure 2. EdgeNet takes as input a pair of corresponding
edges (a, b) and (a+, b+) from two shapes S and S+ respec-
tively. We randomly sample two points a� and b� on S+

and create two triplets (a, a+, a�) and (b, b+, b�). Here su-
perscript ’+’ denotes a corresponding point and ’-’ denotes a
non-corresponding point. There is an edge between a and b,
and similarly to a+ and b+.

For the triplet (a, a+, a�) , we use the triplet loss func-
tion [15] enforcing that the features of a and a+ is as close
as possible and the feature of a and a� are away by some con-
stant distance. We use the same loss function for the triplet
(b, b+, b�). The sum of the two loss functions is defined as a
bi-triplet loss.

The bi-triplet loss enforces features of a and a+ are close and
features of b and b+ are close. As a (resp. a+) and b (resp. b+)
are adjacent points on S (resp. S+), we define a smoothness
loss which enforces both features of a and b and features of a+

and b+ are as close as possible.
Local transformations are learned from the PatchNet to align

two local patches Pa and Pa+ and align two local patches Pb

and Pb+ respectively. The two edge vectors (a, b) and (a+, b+)
should be aligned in R3 after applying the local transforma-
tions. Thus a transformation loss is defined on the two local
transformations to enforce the spatial alignment of the two edge
vectors.

We define the metric loss as the sum of the above loss func-
tions, which is used for training the whole network. The met-
ric loss considers the edge-wise correspondences in both feature
and Euclidean spaces. Thus, the learned features encode local
context and global structure.

Learning. A large corpus of bi-triplet pairs is constructed to
train the EdgeNet and learn the network parameters. Specif-
ically, we sample pairs of shapes. For each pair of shapes, we
feed all pairs of corresponding edges into the network.
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Figure 3: PatchNet architecture. Our model processes the local
patch and global position through a deep multi-layer precep-
tron to extract local context- and global position-aware feature.
mlp is the shorthand of multilayer perceptron (layer sizes are
shown in bracket). All layers have Batchnorm and ReLU op-
erations.
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Figure 4: Construction of the local patch at the red vertex. (a)
The coordinates of the vertex according to the bounding box of
the shape is used as its global information; (b) The biharmonic
distance circle (in purple) around the vertex; (c) N points are
uniformly sampled in the biharmonic distance circle to form
the local patch at the vertex.

3 RESULTS AND APPLICATIONS

We evaluate the discriminative power of our local shape fea-
tures by conducting several qualitative and quantitative ex-
periments. Throughout these experiments, EdgeNet is trained
using di↵erent datasets for di↵erent tasks, but always with the
same default network setting as described in Section 2. These
experiments are conducted on a computer with a 4.20GHz In-
tel(R) Core(TM) I7-7700K CPU and a Nvidia 1080Ti 11GB
GPU.

3.1 Performance and Evaluation

Two quantitative criteria and one qualitative popular criterion
are used to measure the performance of the local shape fea-
tures: Cumulative Match Characteristic (CMC) [9], Princeton
Protocol Counting (PRP) [7] and the feature map.

Quantitative evaluation. We conduct comparisons with sev-
eral existing techniques, includig LMVCNN [5], JLCNN [3],
HKS [14], PCA [6], and SDF [13]. Our method is denoted as
”EdgeNet”. We use the same training and testing datasets for
EdgeNet, LMVCNN, and JLCNN. Note that all hyperparam-
eters of the LMVCNN and JLCNN are the same as Huang et
al. (2017) and Chen et al. (2018) respectively. Due to the fact
that HKS, PCA, and SDF features are class-insensitive and do
not need training processes, they are directly evaluated on the
same testing dataset.

Figure 5 exhibits the performance of di↵erent features us-
ing CMC on the testing dataset. And the corresponding ac-
curacy (PRP) of di↵erent features are shown in Figure 6. We
can see that our learned feature significantly outperforms other
features, including the learned descriptors LMVCNN and JL-
CNN, and the hand-crafted local features successfully used in
3D shapes processing. We also plot situations that are gener-
ated by using our EdgeNet on di↵erent testing shapes, as shown
in Figure 7. Corresponding points have the same RGB color.

Qualitative evaluation. We also qualitatively measure the
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Figure 5: Performance of nearest neighbor matching in the
deep feature space (CMC) measured using di↵erent features
on each category. EdgeNet (red line) significantly outperforms
the other standard features.

Figure 6: Performance of shape correspondence measured by
using the PRP.

performance of di↵erent features using the feature map. We
use t-SNE [10] to embed the local shape feature into a 2D space
(perplexity = 30 by default). Figure 8 shows a two-dimensional
visualization of di↵erent features computed as five points (head,
left shoulder, right shoulder, knee, and thigh) across di↵erent
shape transformations. Points with the same colors are seman-
tical corresponding ones. The ideal situation is that the points
of the same color should cluster as tight as possible. On the
whole, our method can successfully discriminate the symmet-
rical points (sky blue sphere marked on left shoulder and dark
blue sphere marked on right shoulder) across di↵erent shape
transformations.

Ablation studies. To justify the specific design of PatchNet,
we compare our full PatchNet against the network that omits
the global location encoder. For each network, the performance
of the learned feature are evaluated by computing the corre-
spondence accuracy (PRP). Figure 9 (left) plots the results on
the four categories. From the results, it can be observed that
explicitly incorporating local and global information yields a
better performance.

We also illustrate the necessity of transformation loss and
smoothness loss in metric loss. The results of the correspon-
dence accuracy (PRP) on airplane category demonstrate that
our full metric loss function achieves the best performance, as
shown in Figure 9 (right). This directly verifies the usefulness
of smoothness loss and transformation term. Besides, the bi-
triplet term, which is used to measure the semantic similarity
in the feature space, also heavily contributes to the feature
performance.

3.2 Applications

In this subsection, we apply our shape features in a wide range
of geometric processing tasks, and evaluate it to the existing
approaches. We conduct tasks of our shape features to model
segmentation, partial-to-full matching, and shape retrieval.

Shape segmentation. Our network learns local shape feature

Figure 7: Visualization of point correspondences obtained with
the learned local feature on di↵erent testing shapes. Corre-
sponding points have the same RGB color.

(a)  Five corresponding points on the head (red sphere), le� shoulder (sky blue sphere), right shoulder (dark blue sphere), 

   knee (green sphere), and thigh (purplesphere) across different shapes (21 examples from SCAPE testing dataset).

(b) 2D visualiza�on of different feature spaces using t-SNE on human testing set. Each dot corresponds to a feature at a 
 specific point on the shape marked in the respec�ve color. The points with the same color should ideally cluster as 
�ght and as possible).

Figure 8: Local feature visualization on SCAPE dataset.

(a) (b)

Figure 9: Ablation studies on di↵erent terms in (a) PatchNet
and (b) metric loss.

that can be used for shape segmentation. The task is to assign
category labels to di↵erent parts of an input shape by using
our features. It is posed as a point-wise classification prob-
lem. We thus use a simple 1-layer multilayer perceptron on the
part classification task. The features generated by pre-trained
EdgeNet are used as input. We also make comparisons with
PointNet [11], PointCNN [12], Guo et al. [4], and Kalogerakis
et al. [6].

In Table 1, we report the labeling accuracy on the test shapes
for all of the methods. The labeling accuracy improves 6.68%
on average with our learned local shape feature. We also
present some examples of shape segmentation results, as shown
in Figure 10.

Partial matching. In the partial matching application, we
are interested in generating dense matchings between partial
shapes and full shapes. For each category, we train EdgeNet
on the complete shapes with the same training dataset and
configurations as above experiments, and then we extract the
local features of testing partial models. As shown in Figure 11,
we visualize the dense matches between partial-to-full shapes.
Each point is rendered as a small ball.

Shape retrieval. Inspired by PointNet [11], we can aggre-
gate all per-point local features of a shape, generated by our
method, via a symmetric function max pooling into a 128-dim
vector as its global feature, which can be used for shape re-

mean aero chair motor
ToG[2010] 73.83% 73.73% 71.94% 75.83%
ToG[2015] 67.97% 69.81% 59.15% 74.96%
PointNet 74.26% 70.14% 78.09% 74.54%
PointCNN 70.93% 70.81% 70.48% 71.52%
EdgeNet 80.94% 77.45% 83.33% 82.03%

Table 1: Shape labeling accuracy of di↵erent methods.
ToG[2010] is short for Kalogerakis et al.[2010], and ToG[2015]
is short for Guo et al.[2015].
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Figure 10: Visualizations of shape segmentation based on our
learned feature. For each category, the corresponding parts are
shown in same color.

Ai
rp
la
ne

M
ot
or
bi
ke

Ch
ai
r

Figure 11: Dense correspondences of partial shapes with 3D
complete shapes. Corresponding points have the same RGB
color.

trieval. We compare our global feature with previous methods
including PointNet [11] and PointCNN [8]. Figure 12 visualizes
2D embedding of learnt global shape features by using t-SNE
(perplexity = 30 by default). It shows that our global shape
feature appears visually more plausible than other methods.

4 CONCLUSIONS

In this article, we propose a metric learning architecture for
generating semantic features of 3D shapes. The core of our
approach is EdgeNet. It is composed of two PatchNets, which
are end-to-end feature extractors. We first feed the PatchNet
with a number of local patch to extractor the shape local rep-
resentation. Then, we use the EdgeNet for feature and metric
learning. In the process of local feature learning, the correct
correspondence is kept between an edge-pair in feature space,
by using the EdgeNet will in turn make the learned feature
is structure-aware. And the PatchNet also encodes the local
context and global position into the learned feature. Thus,
we refer to our local descriptor as context-, asymmetry-, and
structure-aware feature.

It is worth noting that EdgeNet is a general-purpose met-
ric learning architecture, which can learn useful representation
explicitly with well-defined relative relationships. We believe
there will be much potential by applying EdgeNet in other
practical applications.

PointCNNPointNet EdgeNet

airplane bag bike cap car chair earphone

guitar knife lamp laptop mug pistol rocket skateboard

table

Figure 12: 2D visualization of di↵erent feature space by using
t-SNE techniques. Each color corresponds to a shape category.
Idea feature space would generate an 2D embedding map with
dots of the same color cluster as tight as possible.
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Abstract

We use persistent homology along with the eigenfunctions of the
Laplacian to study similarity amongst triangulated 2-manifolds.
Our method relies on studying the lower-star filtration induced
by the eigenfunctions of the Laplacian. This gives us a shape
descriptor that inherits the rich information encoded in the
eigenfunctions of the Laplacian. Moreover, the similarity be-
tween these descriptors can be easily computed using tools that
are readily available in Topological Data Analysis. We pro-
vide experiments to illustrate the e↵ectiveness of the proposed
method.

1 Introduction

Shape similarly is a critical problem is computer vision, geo-
metric data processing and computer graphics. Multiple at-
tempts have been made to quantify the similarity among 3D
shapes [1, 30, 27]. Several challenges rise up when trying to
construct an e↵ective and e�cient similarity measure includ-
ing the complexity of the data, the potential noise in the data
and the variation in the structure.

While the Laplacian eigenfunctions have been utilized in the
literature of geometric processing to extract shape descriptors
[29, 33], most of the eigenfunction-based descriptors require
extensive processing to obtain an e↵ective descriptor. Further-
more, the comparison between such descriptors requires de-
signing a specialized similarity measure that adds to overhead
computational time [32].

The eigenfunctions of the Laplacian store important infor-
mation about the geometry of the underlying manifold [23, 24].
Moreover, spaces that have similar structures also tend to have
similar sets of eigenfunctions [17]. From this perspective it is
natural to utilize the eigenfunctions to measure the similarity
between a collection of 3D shapes. The di�culty usually lies in
finding the correspondence between two given manifolds [32].
More specifically, when manifold is discretized this correspon-
dence might not even exist due to the di↵erence between the
cardinalities of the two vertex sets. Instead sub part correspon-
dence might be considered, which is also a di�cult problem [2].

In recent years the interplay between machine learning and
Topological Data Analysis (TDA) has witnessed many devel-
opments with the better understanding of two tools in TDA:
Persistent Homology (PH) [8] and the construction of Map-
per [26]. These TDA tools have been shown to be a powerful
tool for shape classification and recognition [15, 21], data sum-
mary [12, 5], topological signatures of data [3], graph under-
standing [13], among others.

In this paper we utilize persistent homology to extract the in-
formation encoded in the eigenfunctions of the Laplacian to ob-
tain a topological mesh signature that can be used to measure
the similarity among triangulated manifolds. Our proposed
method has multiple advantages. On one hand, the method

proposed here avoids the correspondence problem all together.
Our approach relies on extracting the topological information
encoded into the lower-star filtration (see Section 2 for the def-
inition) of the eigenfunctions of the Laplacian and storing the
resulting finger print in a structure called the persistence di-
agram [8]. This ultimately allows for an e↵ective comparison
between two manifolds by comparing between the persistence
diagrams that are induced by the eigenfunctions of the Lapla-
cian.

Using the persistence diagram to compare between metric
spaces has been previously applied to meshes [4]. However, the
metric-based method in [4] has two major limitations. Firstly,
finding the distance function on large meshes is computation-
ally expensive and usually requires utilizing a sampling tech-
nique, which might a↵ect the quality of the final persistence
diagram. Secondly, in order to obtain a strong descriptor from
the persistence diagram induced by the distance matrix, one
usually needs the information encoded in higher order persis-
tence diagrams, which are expensive to compute.

Our method avoids these two limitations. On one hand, our
method computes the persistence diagram using the lower-star
filtration of one or a few eigenfunctions of the Laplacian. In
fact we show that utilizing a single eigenfunction yields a per-
sistence diagram that has more classification power than the
metric-based approach in [4]. On the other hand, our method
only requires the 0-order persistence diagram, which is very
e�cient to compute. We demonstrate our results by showing
the e↵ectiveness of our descriptor on standard datasets. See
Section 3 for more details.

2 Persistence Homology on Triangulated

Meshes

The mesh topological signature that we propose here utilizes a
particular filtration that is induced by a scalar function defined
on a mesh M . Our work is mainly aimed at studying triangu-
lated meshes. However, we will state our definitions in terms
of simplicial complexes. The reason for this is that most tech-
niques introduced in this article are applicable beyond meshes,
and we will provide more details in this regard towards the
conclusion.

Let K be a simplicial complex. Let S be an ordered sequence
�1, · · · ,�n of all simplices in the complex K, such that for
simplex � 2 K every face of � appears before in S. Then S

induces a nested sequence of subcomplexes called a filtration:

� = K0 ⇢ K1 ⇢ ... ⇢ Kn = K (2.1)

such that Ki = [ji�j is the subcomplex obtained from first
i simplicies �1, · · · ,�i of S. Given a filtration as in 2.1, one
may apply the homology functor on it to obtain a sequence of
homology groups connected by homomorphism maps induced
by the inclusions:

F(K) : Hd(K0) �! Hd(K1) �! ... �! Hd(Kn) (2.2)
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A d-homology class ↵ 2 Hd(Ki) is said to be born at time i

if it appears for the first time as a homology class in Hd(Ki).
A d-class ↵ dies at time j if it is trivial in Hd(Kj) but not
trivial in Hd(Kj�1). The persistence of the class ↵ that is
born at Hd(Ki) and dies at Hd(Kj) is defined to be j � i.
Persistent homology captures the birth and death events in a
given filtration and summarizes them in a multi-set structure
called the persistence diagram P

d(K) [8]. Specifically, the d-
persistence diagram of a filtration F(K) is a collection of pairs
(i, j) in the plane, where each (i, j) indicates a d-homology class
that is created at time i in the filtration F(K) and dies entering
time j. A persistence diagram can be represented equivalently
by persistence barcodes [11]. Specifically every point (i, j) in the
persistence diagram can be represented by a bar that starts at
time u and ends at time v.

Persistence homology tracks the evolution of homology
classes as this element moves though the homomorphism from
left to right. More specifically, Persistent homology can be de-
fined given any filtration, such as equation 2.1. For our purpose
we are given a piece-wise linear function f : |K| �! R defined
on the vertices of K. We assume that the function f has dif-
ferent values on di↵erent vertices of K. Any such a function
induces a filtration called the lower-star filtration. We define
this filtration next.

Let v 2 V (K) be a vertex of K. The star of v, denoted as
St(v), is the set of all simplices in K that contain v as a vertex.
When we are given a piece-wise linear function f defined on K,
we can also define the lower star of v. Namely, the lower star of
a vertex v 2 V (K) as LowSt(v) = {w 2 St(v)|f(w)  f(v)}.

Let V = {v1, · · · , vn} be the set of vertices of K sorted
in non-decreasing order of their f -values. Let Ki :=
[jiLowSt(vj). The lower-star filtration is the filtration is
defined to be

Ff (K) : � = K0 ⇢ K1 ⇢ ... ⇢ Kn = K (2.3)

The lower-star filtration reflects the topology of the function
f in the sense that the persistence homology induced by the
filtration, equation 2.3, is identical to the persistent homology
of the sublevel sets of the function f . We denote P

d
f (K) to be

the d-persistence diagram induced by the lower-star filtration
Ff (K). In our work, the lower-star filtration is the main tool
to extract the signature from a given space.

Here we focus on triangulated meshes, and we only compute
the 0-persistence diagram on those meshes using the filtration
induced by the lower-star filtration of the eigenfunctions of the
Laplacian of these meshes. Such persistence diagrams can be
e�ciently computed using the union-find data structure.

2.1 The Lower-Star Filtration Induced by the

Eigenfunctions of the Laplacian.

Let M be an triangulated manifold. The matrix L is self-
adjoint and positive semi-definite. It has an orthonormal eigen-
system (�n,�n)

+1
n=0, L�n = �n�n, with 0 = �0  �n  �n+1,

in C(G). The eigenvectors of the Laplacian L form a rich
family of scalar functions defined on G that have been uti-
lized extensively in shape understanding and shape comparison
[16, 23, 18]. The eigenfunctions of the Laplacian has also been
used in graph understand [25], segmentation [22], and spectral
clustering [20].

The reasons for extracting the information of the eigenfunc-
tions of the Laplacian using the lower-star filtration can be
summarized in the following points:

• The eigenfunctions of the Laplacian provide canonical
scalar functions that depend only on the intrinsic geomet-

ric properties of the mesh. In other words, they have all
desirable properties of eigenfunctions of the Laplacian—
being invariant under certain deformation and robustness
to noise and structure variation—will be inherited by the
persistence diagram induced by the lower-star filtration of
these functions.

• The eigenfunctions of the Laplacian store rich information
about the geometry of the underlying manifold and the
lower-star filtration provide the means to extract this in-
formation and stores it in the structure of the persistence
diagram. This structure provides a ranking for features
extracted from the eigenfunctions via the notion of persis-
tence.

Ordering the eigenvectors of L by the increasing value of their
corresponding eigenvalues, we use the first k-eigenvectors that
correspond to the smallest nonzero k eigenvalues of L. These
vectors contain low frequency information about the underlying
manifold, and they usually retain the shape of complex meshes.
In particular, we found that the first non-trivial eigenfunction
of the Laplacian to be very e↵ective for our purpose. This
eigenfunction, called the Fiedler vector [9, 10], has many appli-
cations in graph theory as well as in computer graphics [14, 19].
Moreover, this vector has multiple interesting features. For in-
stance, the maximum and the minimum of the Fielder vector
tend to occur at points in the dataset with maximum geodesic
distance [6] allowing its values to spread from one end of the
graph following its “shape” to the other end.

2.2 Comparing Between Two Persistence Dia-

grams

We can quantify the structural di↵erences persistence diagrams
by using the bottleneck distance.

Let ⌘ be a bijection between two persistence diagrams X and
Y . The bottleneck distance between X and Y [7] is defined as

W1(X,Y ) = inf
⌘:X!Y

sup
x2X

kx� ⌘(x)k1 . (2.4)

The bottleneck distance requires the persistence diagrams to
have the same cardinalities. For this reason we allow infinitely
replication of points along the diagonal y = x to a given per-
sistence diagram.

Other distances can also be defined on the space of persis-
tence diagrams, such as the Wasserstein distance. For the pur-
pose of this article we only restrict ourselves with the bottleneck
distance.

(a) (b) (c)

Figure 1: An illustration of the pipeline. (a) We compute one
of the eigenfunctions of the Laplacian on the meshes that we
want to compare. (b) The lower-star filtrations of the meshes
with respect to these scalar functions are computed and their
persistence diagrams are extracted. (c) A pairwise compari-
son between the persistence diagrams is performed using the
bottleneck or Wasserstein distances.
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Figure 2: On the left we show the data set that we used in our experiments. The data set consists of 60 triangulated meshes
that are divided into 6 categories, which are shown in the figure on the right. We compute the Fielder’s vector for each mesh in
this data set and then compute the 0-persistence diagram associated with the lower-star filtration of this vector. The bottleneck
distance between these diagrams is calculated, and the figure on the right shows the 2d t-SNE projection obtained using the final
distance matrix. Notice how our method provides distinct clusters on this data.

3 Method and Results

Given the above setup, our method can be summarized as fol-
lows. First we compute a certain eigenfunction of the Laplacian
on a given mesh dataset. In our case we used the Fielder’s vec-
tor. We then compute the 0-persistence diagrams of the lower-
star filtration induced by the chosen eigenfunction. Once we
have the persistence diagrams of the meshes, the distances be-
tween these diagrams can be computed using the bottleneck
distance we defined in Section 2.2. See Figure 1 for a summary
of the method.

To validate the e↵ectiveness of the topological descriptor pro-
posed here, we test it using a publicly available data from [28].
The data set consists of 60 meshes that are divided into 6 cate-
gories: cat, elephant, face, head, horse and lion. Each category
contains exactly ten triangulated meshes.

On this dataset, we computing the distance matrix between
the persistence diagram of the lower-star filtration of the in-
duced Fielder’s vectors using bottleneck distance. To assess
the final results, we compute the 2d t-SNE projection [31] of
final distance matrix. The result is reported in Figure 2.

Note how this topological descriptor provides a distinct clus-
ters for the underlying data set. Furthermore, the results shown
here shows that the proposed descriptor has a better classifica-
tion power than the one proposed in [4].

One observation worth mentioning here is that the t-SNE
projection in Figure 2 shows that heads and faces clusters ap-
pear to be closer to the lions cluster than cats cluster. The
reason for this is mostly an artifact of the t-SNE projection.
In fact the MDS projection shows that the lions and the cats
cluster are indeed closer to each other than heads and faces.
We presented the t-SNE projection here over MDS since the
latter showed the some clusters too close to each other.

4 Further Directions and Conclusion

The experimentation results are only shown with respect to
Fielder’s vector. In theory any eigenfunction of the Laplacian
can be used in a similar manner, as illustrated above. Combin-
ing the signatures obtained from multiple eigenfunction poten-

tially provides even a stronger descriptor. We plan to pursue
this direction in the extension of this work.

The construction that we introduced here on triangulated
meshes can be easily extended to study similarity between other
types of objects. Namely any domain where the definition of
the Laplacian is applicable, such as points clouds and graphs.
We plan to investigate these directions in the future.
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Abstract

Femoral shaft fractures have been correlated with frequent mor-
bidity and mortality. It is a major musculoskeletal disorder
caused by tremendous force being applied to the femur. One
of the most common surgical treatments for fixation is the in-
tramedullary nailing, which utilizes a specially designed metal
rod and screws to be implanted into medullary canal. However,
severe bowing of the femur can result in mismatch between the
intramedullary nail and the alignment of the femur. Such mis-
match is a risk factor for anterior cortical perforation of the
distal femur with subtrochanteric fractures, and leg length dis-
crepancy with fractures of the femoral shaft. Therefore, the
exact data of the femur geometry is mandatory to develop and
apply intramedullary nail for bowed femur. This research is
to develop an automatic approach with direct extraction of the
skeleton from a 3D femur for each individual patient, in or-
der to produce an accurate 3D preoperative simulation possible.
The 3D femur is generated from a set of computed tomography
images. The e�ciency and the robustness of 3D skeletonization
based on maximum-minimum centre approach will be discussed
in this paper. The proposed approach can potentially be assisted
for the implant measurements. Several examples are included to
demonstrate that the proposed approach works well for several
3D femurs.

1 Introduction

Three-dimensional (3D) skeletonization provides an alternative
to capture the inner structure of an overall complex 3D mesh
by forming its own skeletons. These computed skeletons con-
sist of significant geometric and topological information that
are used extensively to produce segmentation for various anal-
yses and visualization in medical imaging, robotics and video
surveillance applications.

Although the development of 2D skeletonization is relatively
well established, but the skeletons computation in 3D is yet a
challenging task for both researchers and practitioners. And, it
is definitely worth to be explored in the study of orthopaedics
especially the human femur.

The femur is the longest, heaviest and strongest bone in our
human body. Di↵erent kinds of trauma with a lot of forces can
damage this bone, such as in some motor vehicle accidents or
motorcycle crash. This can also happen in a lower-force ac-
cident, such as fall from slippery floor, ladder landing on foot
among the older people due to their weaker bones or osteoporo-
sis. Femoral fractures usually require, open reduction internal
fixation (ORIF) with intramedullary nail or plate to repair and
heal the broken bones [3].

As for the ORIF, it consists of two procedures performed by
an orthopaedic surgeon under anaesthesia: open reduction and
internal fixation [1]. ORIF involves reduction of the fracture

and apply an internal fixation device such as an intramedullary
nail (usually made of titanium) into the medullary canal in
order to stabilize the fracture until bone union. This procedure
is also known as intramedullary nailing and involves the use of
other special types of implants including metal plates, screws,
stainless steel pins and wires.

Intramedullary nailing is one of the most common surgical
treatment for femoral fracture fixation. Hence, the preoper-
ative planning template is an essential prerequisite to esti-
mate the correct nail diameter and length for the success of
orthopaedic procedures [5].

However, mismatch problem of current available nail with
bowed femurs and, an accurate and automatic 3D preoperative
simulation are therefore desirable [4].

2 Skeletonization using Max-Min Center

There are mainly three processes to compute as illustrated in
Figure 1. It begins with the individual snapshots of the indi-
vidual human femur into a set of cross-sectional images, which
also known as Computed Tomography (CT) imaging. These
images are used to produce three-dimensional (3D) samplings
of anatomy elements for the human femur. With the use of
reconstruction and parametrization from such datasets, the
structured data (in the form of .obj format) can be obtained
to form a 3D model.

Figure 1: The three main processes.

The final process is the skeletonization to obtain the compact
representation of the femur. The earliest approach for the skele-
ton extraction is the medial axis transform (MAT) proposed by
Blum [2, 7]. MAT is mainly composed of two properties: the
medial axis (MA) and the radius function. Medial axis (MA)
for a given object ⌦ is defined as the loci of all maximal in-
scribed disks that meets two or more boundary points without
crossing any of the boundaries.

MAT (⌦) = {(p, r) 2 Rn ⇥R|Br(p) is maximal ball in ⌦}

MA(⌦) = {p 2 Rn|r � 0 s.t. (p, r) 2 MAT (⌦)}
In order to obtain a detailed information of the object, each

point on the medial axis is associated with the radius function
which form the medial circle. The volume enclosed by the
surface of the object is exactly the union of these circles.

To obtain the skeleton of the 3D femur, we try to find maxi-
mum radius of circle that can fit into the irregular inner polygon
of the slice 3D femur data. We use the following steps to obtain
a reliable skeleton.

1



1. Sliding process : the sliding window with appropriate
height h is decided in the beginning. Then, the vertices in
the sliding window are collected,

Vs = {v : vz 2 (z, z + h)}

where v = (vx, vy, vz) 2 R3, s = (z, z + h).

2. Adjacent face [6] : obtain the faces adjacent to the points
in Vs,

Fs = ddVsee = {fi}mi=0.

Figure 2: Sliding window (2 green circles), Adjacent face
(brown triangle faces).

3. Weighted center point : calculate the weighted average of
Fs,

F̄s =
1
As

mX

i=0

A(fi)f̄i

where As =
Pm

i=0 A(fi), A(fi) = area of a triangle fi, and
f̄i = center of a triangle fi.

4. Slice plane : calculate the weighted average of the face
normal sliding window base plane : face normal average.

5. Inner slice polygon ⌦s : projection face center to base
plane.

6. Max-Min Center : Bs(p, r) is maximal circle in ⌦s.

Figure 3: Weighted center point (green point), Inner slice poly-
gon (blue points), Maximal circle Bs(p, r) (green circle and
line).

In this research, we have proposed maximum-minimum cen-
tre approach to obtain a reliable skeleton of the 3D femur. In
the future, if a lot of relevant data is accumulated, we will
develop a more e�cient algorithm using artificial intelligence
theory. The 3D femur skeletonization would give better under-
standing of the geometry and help to prepare and develop new
intramedullary nailing system.

Figure 4: The 3D femur skeletonization result (green lines).
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Triangular Trigonometric Patches for Surface Interpolant
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Abstract

We construct a new triangular patch with ten control points
weighted by trigonometric functions. This patch interpolates
the positions and normals of the corners of a triangle, and has
the same C1 continuity conditions as a triangular cubic Bézier
patch. Furthermore, we can construct a hybrid variant, giving
four center control points: one copy of the center control point
is used to achieve C1 continuity across each boundary, while
the fourth center control point is a shape parameter that does
not a↵ect the C1 conditions across any of the boundaries.

1 Introduction

A cubic triangular Bézier patch is defined as (see Fig. 1)

bn(u) =
X

|i|=n

piB
n
i (u),

where pi are control points, Bn
i (u) are the bivariate Bernstein

polynomials,

Bn
i (u) =

 
n
i

!
uivjwk,

with u = (u, v, w) being barycentric coordinates relative to a
domain triangle, i = (i, j, k) is a multi-index with n = |i| =
i+ j + k, where

�
n
i

�
= n!

i!j!k! . In this paper, we use u and v as
parameters with w = 1�u� v. The barycentric coordinates u
can be written as u = (u, v).

Figure 1: Control point layout of a cubic triangular
Bézier/trigonometric patch.

Our cubic triangular trigonometric patch uses the same lay-
out of control points as the Bézier patch; its blending functions

are

f300(u) = (1� d)2,
f210(u) = 2b(1� d)f,
f201(u) = 2c(1� d)e,
f120(u) = 2a(1� e)f,
f111(u) = 2abc,
f102(u) = 2ae(1� f),
f030(u) = (1� e)2,
f021(u) = 2cd(1� e),
f012(u) = 2bd(1� f),
f003(u) = (1� f)2.

(1.1)

where

a = sin ⇡w
2 ,

b = sin ⇡u
2 ,

c = sin ⇡v
2 ,

d = sin ⇡(u+v)
2 ,

e = sin ⇡(v+w)
2 ,

f = sin ⇡(w+u)
2 .

(1.2)

2 Properties of the Trigonometric Patch

The cubic triangular trigonometric patch is similar to the cubic
triangular Bézier patch: the patch interpolates the locations
and normals of the corners of a triangle, and the normals of the
corners of the resulting surface are determined by the triangle
panels (for example 4p300p210p201 in Fig. 1).

2.1 Continuity

Two triangular trigonometric patches over neighbouring trian-
gles meet with C1 continuity if they meet with C0 continuity
(sharing a common boundary) and if adjacent panels are co-
planar. The control points involved in the C1 continuity condi-
tions across a boundary are the same in our patch as they are
for polynomial Bézier patch. Thus any scheme that constructs
cubic triangular Bézier patches that meet with C1 continuity
could use our patch instead of cubic triangular Bézier patches
while still using the same construction to determine the control
points.

See [1] for additional details on triangular Bézier patches.

3 Blended Center Control Point

We divide the blending function of the center control point
(p111 in Fig. 1) into four sub-functions. Assigning each of each
sub-function to a new control point, the new blending functions
of this new patch are

1



(a) (b) (c)

(e) (e)

Figure 2: (a) The original patch surface. (b) Shift the center
point downward. (c) Shift the center point upward. (d) Shift
the center point left. (e) Shift the center point right.

f300(u) = (1� d)2,
f210(u) = 2b(1� d)f,
f201(u) = 2c(1� d)e,
f120(u) = 2a(1� e)f,

f111�100(u) = 2abc( b
2c2

e2
+ b2c2

f2 ),

f111�010(u) = 2abc(a
2c2

d2
+ a2c2

f2 ),

f111�001(u) = 2abc(a
2b2

d2
+ a2b2

e2
),

f111�000(u) = 2abc� f111100(u)� f111010(u)� f111001(u),
f102(u) = 2ae(1� f),
f030(u) = (1� e)2,
f021(u) = 2cd(1� e),
f012(u) = 2bd(1� f),
f003(u) = (1� f)2.

(3.3)
It is impossible to interpolate the positions and normals

of triangular mesh over a plane with cubic triangular Bézier
patches. However, with the blended center point triangular
trigonometric patch, the three of the four blended center points
are related to one boundary each. Each of these three center
points only a↵ects the C1 continuity condition of one bound-
ary and does not a↵ect the continuity across the other two
boundaries. The last blended center point is a “free” control
point, and does not a↵ect any continuity conditions across any
boundary. Figure 2 shows five di↵erent patch surfaces that
are variants of an original triangular trigonometric patch. All
of them share the same boundaries, and the same first order
partial derivative values along all boundaries.

Our resulting patch can meet its neighbours with C1 conti-
nuity across all three boundaries. However, as is common with
hybrid schemes, the blending functions have a singularity at
the corners. This singularity is removable for position and first
derivative (and thus, our patch interpolates the position and
normal data of the input triangle), but the patch does not have
well defined second derivatives at the corners.

4 Example

We devised a simple data fitting scheme to test the
ideas in this abstract. The scheme starts by construct-
ing cubic Bézier curves to interpolate the data at pairs
of each input triangle, giving settings for control points
p300, p210, p120, p030, p021, p012, p003, p102, p201 for the triangular
Bézier patch of Fig. 1. We then set p111 to an initial value of

Figure 3: An example of blending the control points across a
boundary.

Figure 4: Trigonometric surface and its Gaussian curvature
plot (curvature computed numerically).

(p210+p120+p021+p012+p102+p201)/6. A network of patches
constructed in this manner will meet with only C0 continuity.

As a second step, we split each center control point p111 of
each patch into four. Three of copies of this control point will
be used to achieve C1 continuity across the three boundaries
of the patch. For example, to obtain C1 continuity across the
boundary between p030, p003, we extend the p111 control points
on either side of this boundary to points p111�100 and p111�1000 ,
and average them to find the location of one of the p111 center
control points (l00 for this patch) for the patch (Figure 3). The
fourth center control point is set to be the average of the other
three copies of the center control points.

Then, there are additional steps applied to improve the qual-
ity of the surfaces. The basic idea is to make the four center
control points get closer, thus the resulting surface will be closer
to a Bézier surface. In particular, we apply the following two
steps in turn for several times.

• Set the values of the first three center control points to be
the value of the fourth center control point.

• Across each boundary, blend the values of two center con-
trol points (Figure 3) to meet C1 continuity.

An example of a surface constructed with our method for a
sampling of the Frankye function [2] is shown in Figure 4.
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Quasi arc-length approximation with cubic B-splines
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Abstract

We present a simple, yet general tool for curve approxima-

tion with quasi arc-length parameterization, having in mind the

specification of trajectories for CNC machining or 3D-printing.

We consider a low degree curve that admits exact implemen-

tation as G-code, namely a cubic B-spline with two internal

knots that can be freely located. The quasi arc-length condition

is incorporated in Hermite fashion, by imposing unit speed and

vanishing tangential acceleration at the endpoints. This results

in a straightforward geometric constraint on the lengths of the

projections of the control legs. By additionally prescribing the

position, tangent direction and curvature at the endpoints, this

tool can be employed for osculatory Hermite interpolation.

We give examples of application for generating polynomial

quasi-arc length approximations of conics, or transcendental

curves such as the clothoid. Finally, we explore the potential of

this scheme for free-form design, by moving the control points

in a constrained manner and adjusting automatically the inter-

nal knots to meet the quasi-arc length condition.

1 Why quasi arc-length approximations

Curves in commercial CAD systems are usually represented by
using a polynomial (or rational) parameterization. However,
the standard rational model su↵ers from two shortcomings:

1. It does not encompass remarkable cases, such as the o↵-
set or transcendental curves, which, consequently, must be
approximated in some way.

2. It cannot yield curves with exact arc-length parameteri-
zation [3], aside from a straight line. An approximation
with improved parameterization may be required, even for
curves in the model, such as a humble circle [1, 5].

Most approximation methods, and especially those based on
geometric continuity techniques, tackle only the first point and
concentrate on generating a good approximant in the sense
of being close to a given curve. However, this requisite does
not su�ce for applications requiring a smooth parameteriza-
tion, i.e., at least C2 and close to the ideal arc-length (natural)
parameterization. Parameterization plays a key role in a tra-
jectory whose parameter is taken as proportional to time. A
smooth parameterization with approximately unit speed is de-
sirable for CNC machining and 3D-printing, to improve the
surface quality, or trajectories for robotic manipulators. Pa-
rameterization is also of paramount importance in skinning [4]
(also known as lofting), because unevenly parameterized sec-
tions result in surfaces that display poor quality.

Our approach addresses both shortcomings simultaneously,
approximating those curves that do not fit into the NURBS
model, with the bonus of a smooth parameterization.

Original curve,
length L

Parametric speed

v(σ)=   dbdσ

t0

t1

Approximationc(t),L

b(σ)

t

0 L
0

1

2

σ

σ

σ=0

σ=L

0,999

1,000

1,001

1,002

v(σ)

v(σ)

Figure 1: Quasi arc-length approximation b(�) to a curve c(t).

Mathematically, the approximation we advocate is sketched
in Fig. 1. Given an original curve segment c(t), with arbitrary
parameterization over a general domain t 2 [t0, t1], we seek a
quasi arc-length approximation b(�), defined over an interval
� 2 [0, L] of length L equal to that of c(t), where � approxi-
mates the arc-length parameter s. Therefore, the normalized
parametric speed v(�) should be close to the ideal unit speed:

v(�) =

����
db
d�

���� ⇡ 1, � 2 [0, L]. (1)

2 Piecewise Hermite interpolation

To achieve a quasi arc-length approximation to c(t), a first
option would be to sample points on it and construct an in-
terpolant that tries to minimize its speed deviation from unity
by some optimization technique, as done in [7] using a quintic
spline. Instead, we put forward a simpler, more geometric al-
ternative, based on an osculatory Hermite interpolant matching
the following conditions at the endpoints 0,1 (Fig. 2a):

1. Customary G2 data: position, tangent and curvature  of
the original curve.

2. Local arc-length behaviour: unit speed (1) and, in addi-
tion, vanishing tangential acceleration.
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Figure 2: (a) Osculatory Hermite conditions. (b) Subdividing the initial curve c(t) into several pieces.

If the approximation with a single interpolant is not satisfac-
tory, just subdivide the initial segment c(t), t 2 [t0, t1], into k
pieces (Fig. 2b), of lengths Lk. Then, for each piece construct
its correspondent Hermite interpolant, and concatenate them.
The pair of conditions above guarantee that the final piecewise
approximation is not only G2 but also C2.

3 Polynomial interpolants

3.1 Bézier quintic

In a previous work [6], we already presented the unique
Bézier quintic b(�) that matches the osculatory Hermite con-
ditions posed in the preceding section. This quintic admits a
startlingly simple geometric characterization (Fig. 3):

1. Control points b0,b1,b2 with projections b0,b1,b
t
2, along

the tangent line L at b0, regularly spaced, by a distance
L. Equivalently, they display locally a non-parametric ge-
ometry, taking L as abscissa axis.

2. A point b2 at a signed distance h from L given by:

h =
0L

2

20
. (2)

Similar relationships hold for the points b5,b4,b3, now using
the tangent line at b5.

L/5 L/5

h

b(σ)

b4

b5

b3

b0
b1 b2

t

t0
b2 =

κ0 L
2

20

R0=1/κ
0

L

Figure 3: Bézier quintic interpolant: arrangement of the con-
trol points bk.

3.2 Cubic B-spline with two internal knots

Rather than a quintic, to solve our Hermite interpolation we
could employ lower-degree cubics, albeit in a piecewise manner.
Since some G-code firmwares admit Bézier cubics (G5), we also
avoid the loss of accuracy incurred by piecewise linear/circular
code [2] required for approximating a quintic.

Using a B-spline representation, 6 control points are required
(as in the Bézier case), which means a non-periodic knot vector
� with two internal knots:

� = {0, 0, 0, u3, u4, 1, 1, 1}L. (3)

The cubic B-spline curve d(�) turns out to be characterized in
a similar way to the Bézier case, in terms of distances dk along
the tangent line L at the endpoint d0 (Fig. 4):

1. De Boor points d0,d1,d2 that display locally a non-
parametric geometry. This property implies that:

d1 = u3
L
3
, d4 = (1�u4)

L
3
, d1+d3 = d2+d4 =

L
3
. (4)

2. A point d2 at a signed distance h from L given by:

h =
2
3
0d1d2,

Analogous formulas apply for d5,d4,d3

L

d1 d2

d 3
d 4

hd0

d1 d2

d3

d2

d3

d4

d5

d(σ)

Internal knots

t

t

de Boor points

Figure 4: Cubic B-spline interpolant: arrangement of the de
Boor points dk.
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Therefore, the construction enjoys two degrees of freedom,
namely the two values u3, u4 (3), which determine the lengths
d1, d4 (4), and hence d2, d3. These values could be used to
optimize the approximation.

4 Free-form design

The schemes of the preceding section also o↵er potential for
free-form design of quasi arc-length curves, rather than approx-
imating a given curve, which makes sense for some applications
mentioned in the introduction, such as skinning. To increase
design flexibility, we could concatenate several segments in C2

fashion, simply by setting equal curvatures at the joints.
For each segment, the control points are constrained to meet

the quasi-arc length conditions. In the Bézier case, we could
set freely:

• The endpoints b0,b5.

• The tangent lines at the endpoints, by choosing b1,b4,
with the constrain |b0b1| = |b4b5|. The position of either
b1,b4 determines the constant L.

• The distance h between b2 and L, which controls the cur-
vature at the endpoint b0, and analogously for b3.

In the cubic B-spline case, the inner knot values u3, u4 (3)
provide two additional degrees of freedom. Rather than setting
these knots directly, we could utilize this additional flexibility
to choose arbitrary locations for d1,d4. Indeed, these points
determine the distances d1, d3, and then u3, u4 from (4). Re-
search on this subject is under way.
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Abstract

The adoption of architected and other types of material struc-
tures in mechanical design has seen a steady increase due to
their abilities to achieve a wide range of material properties
and accommodate multi-functional requirements with a single
base material. To facilitate the design of multiscale structures
with such materials, we propose a novel material property en-
velope (MPE) that encapsulates the attainable e↵ective mate-
rial properties of a given material structure family. The MPE
interfaces the coarse and fine scales by constraining the combi-
nations of the competing material properties (e.g., volume frac-
tion, Young’s modulus, and Poisson’s ratio of isotropic materi-
als) during the design of coarse scale material properties. Due
to the general lacking of analytical relationships between the
competing material properties, we propose a sampling and re-
construction approach to represent the MPE of a given family
of structures with the method of moving least squares. The pro-
posed approach enables the analytical derivatives of the MPE,
which allows the problem to be solved more accurately and e�-
ciently during the design optimization of the coarse scale e↵ec-
tive material property field. The novel interface enables multi-
scale designs by decoupling design parameters of fine-scale ma-
terial structures from the coarse scale design and optimization,
significantly reducing the complexity while improving the scala-
bility of multiscale design problems. Besides, di↵erent material
structures, as well as classical engineering materials, can be
compared and used concurrently through the proposed envelope,
enabling the interchangeable design among multiple families of
material structures.

1 Introduction

Additive manufacturing (AM) allows mechanical components
with complex shapes and internal structures to be manufac-
tured without significantly increasing the cost or turnaround
time. This unique feature of AM leads to a design space that is
too vast to be represented by existing design methods. For the
first time in an extended period, our ability to design falls short
to our ability to manufacture. One e↵ective way to approach
such complexity is through scales. Liu and Shapiro [4] proposed
a framework for modeling multiscale material structures by the
recursive composition of two-scale material structures. The
framework links the scales by establishing an explicit relation-
ship between shape–material properties at the fine scale and
material properties at the coarse scale and ensures the inter-
changeability and interoperability of di↵erent representations
on di↵erent scales via queries. Albeit successful in generalizing
the existing two-scale modeling approaches through the com-
mon mathematical model, the framework is not yet complete
for designing multiscale structures in that it lacks a mechanism
to constrain the design of the material property on the coarse
scale (Figure 1).

In the current work, we propose a novel concept of material

property envelope (MPE) that encapsulates all attainable ef-
fective material properties of interest by a given family of mate-
rial structures. The MPE constrains combinations of the com-
peting material properties, e.g., volume fraction vs. Young’s
modulus, during the design of coarse scale material properties,
decoupling design parameters of fine-scale material structures
from the coarse scale design and optimization, significantly re-
ducing the complexity which improving the scalability of mul-
tiscale design problems. We propose a sampling and recon-
struction approach to modeling the MPE of a given family of
material structures. In particular, we extend the method of
moving least square (MLS) into dimension higher than three
to support the high dimension material property envelope. We
discuss di↵erent cases of reconstruction depending on the rela-
tive dimensionality of the material property envelope and ma-
terial property space. The method of moving least square is
used for its ability to provide analytical derivatives of the level
set function representing the MPE. This is important because
coarse scale material property design is often formulated as an
optimization problem, and analytical derivatives allow faster
convergence of the optimization, especial with the high dimen-
sional design space. We formulate the problem of coarse scale
material property design as an MPE constrained material op-
timization and demonstrate the e↵ectiveness of the proposed
approach with examples and discuss the relationship between
the proposed approach and SIMP-based topology optimization.

2 Material property envelope

Let Ei representing the homogenization process for a set of
n � 2 competing material properties {p1, p2, · · · , pn} spaning
the material property space P . The material property envelope
of a downscaling function D, which is the given process of gen-
erating the fine scale structure, can be defined set-theoretically
as:

{(p1, p2, · · · , pn) 2 P | 8i, 9S 2 im(D) s.t. Ei(S) = pi} (2.1)

where im(D) represents the resultant structure of the down-
scaling function D.

Apart from the degenerate cases, the dimension of the en-
velops generally equals the number of design parameters of the
structure or the number of the material properties of inter-
est, whichever is less. For example, octet trusses studied in [6]
are parametrized by the diameter of the rods in the truss and
the Poisson’s ratio of the based material. The cubic symme-
try in the e↵ective material properties of octet trusses allows
the elasticity tensor to be characterized by three material pa-
rameters, commonly as Young’s modulus E, Shear modulus G,
and Poisson’s ratio ⌫ (see Figure 2). Together with the vol-
ume fraction of the trusses, the MPE of octet trusses resides
in a four-dimensional material property space. However, the
e↵ective material properties of the trusses will be concentrated
around a two-dimensional surface because only two parame-
ters are used to change the shape and material of the trusses.
Knowing the dimension of the MPE a priori helps the recon-
struction of MPE from sampling data set, which are discussed
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Figure 1: Two approaches of multiscale structure design.

in the following sections. When such information is not readily
available, a quick localized principal component analysis (PCA)
could help determine the dimension of data set as well.

3 Reconstrcting MPE from sampled material
properties

Given a material structure, computing its e↵ective material
properties usually involves solving a number of partial di↵er-
ential equations with di↵erent boundary conditions [5, 1]. As a
result, a direct analytical relationship between competing ma-
terial properties is generally not available. In the current work,
we adopt a sampling and reconstruction approach to approxi-
mate the material property envelope defined in Equation 2.1.
For practical purposes, the MPE is represented as a level set,
which is a scalar field defined over the entire material property
space, with a one-to-one correspondence to the set-theoretic
definition. The zero and negative level sets correspond to the
boundary and the interior of the MPE, respectively.

To approximate the material property envelope, we first pop-
ulate the space of competing material properties by sampling
the e↵ective material properties of the given material structure
family. For material structures with procedural or paramet-
rical representations, the material property envelope can be
computed through a parameter sweep, where every design pa-
rameters of the material structure are sampled at regular or
irregular intervals covering the entire range of parameters.

We use the method of moving least squares (MLS) to recon-
struct the MPE from the sampling data. The method not only
is easy to extend to and scales well with high spatial dimensions
to accommodate the high dimensional material property space
but also provides analytical derivatives w.r.t every material
property of the fitted function with correctly chose weighted
function. MLS can be understood through the weighted least
squares approximation which adds a local weight function ✓ to
the traditional least square method:

min
f

X

i

✓(kx̄� xik)kf(xi)� fik2 (3.2)

where fi is the function value sampled at point xi, f is a degree
m polynomials in d dimensional space:

f(x) = b(x)T c(x̄) (3.3)

where b(x) = [b1(x), ..., bk(x)]
T is the polynomial basis vector

and c(x̄) = [c1(x̄), ..., ck(x̄)]
T is the vector of unknown coe�-

cients. If ✓ is locally defined, f(x) is also defined only locally.
The unknown coe�cients c(x̄) is a function of x̄ since Equa-
tion 3.2 is weighted by distance to x̄. By setting the partial
derivatives of equation 3.2 w.r.t. c(x̄) to zero, c(x̄) is solved as

c(x̄) = [
X

i

✓(di)b(xi)b(xi)
T ]�1

X

i

✓(di)b(xi)fi (3.4)

where di = kx̄� xik)
The MLS method was proposed by Lancaster and Salkauskas

[2] for surface generation from 3D point cloud data. In MLS, x̄
is moved over the entire domain and f(x) can be computed for
every x̄ location. It has been shown that the global function
f(x) is continuously di↵erentiable if and only if the weighting
function is continuously di↵erentiable [3]. We use a Gaussian
function in the current work. MLS is also a local approach:
the interpolated value of any point can be computed locally
on demand without processing. This is in stark contrast with
the distance field approach [7], which is a global approach and
require a significant computational resource to construct.

4 Coarse scale design with MPE

In this section, we formulate the problem of designing coarse
scale material property as a PDE-constrained optimization
problem which usually takes the form

min
m

J(u,m)

subject to: F (u,m) = 0, h(m) = 0, g(m)  0
(4.5)

where the vectorm contains the material properties, F (u,m) =
0 is a system of PDEs parametrized by m with solution vector
u, and J(u,m) is the scalar-valued objective functional that
is to be minimised. The equality and inequality constraints
h(m) = 0 and g(m)  0 enforce additional conditions on the
material properties. The displacement field u of a structure de-
fined within a fixed design domain ⌦ is governed by the equa-
tions of static equilibrium:

div� + b = 0, x 2 ⌦ (4.6)

under the assumption of small strains

✏ =
1
2
[ru+ (ru)T ] (4.7)
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(a) E↵ective material property samples with varying Poisson’s ratio
of base material.

(b) Material property envelope as the bounded fitted surface by
MLS.

Figure 2: Material property samples and envelopes of Octet truss. Only three dimensions of the four dimensional material space
is shown in the plot. The sampling data and polynomial reconstruction are reproduced from [6].

and linear elastic material response

� = C✏ (4.8)

The constitutive relation C is a function of material properties
vector m. It is possible that only a subset of m is used to
parameterize C as m may include properties, such as volume
fraction and surface area, which are not part of the constitutive
relation.

Depending on the dimensionality, the MPE may take the
form of either equality or inequality constraints. The full di-
mensional MPE is represented by a level set of negative values,
therefore can be modeled as the inequality constraint g(m)  0.
On the other hand, lower dimensional MPE is represented by
the zero level set, therefore can be modeled as the equality
constraint h(m) = 0. We note that MPE constrains the com-
binations of material properties such that it is attainable by
the given family of material structures as all locations x 2 ⌦.
This constraint will be enforced over every element in the finite
element discretization.

Many algorithms for constrained nonlinear optimization re-
quire gradients information of the objective function and con-
straints. Ordinarily, the gradient information of the constraints
is calculated numerically by finite di↵erence approximation. In
the next section, we provide the partial derivatives of the con-
straints analytically, allowing the problem to be solved more
accurately and e�ciently. This is particularly important as
the number of constraints we have is on the same order as the
number of finite elements. The derivation of the analytical gra-
dient of the objective function is problem dependent and will
be explained through examples.

4.1 Analytical partial derivatives of MPE as con-
straints

When reconstructed by the method of moving least squares,
the scalar value representing the MPE is continuously di↵eren-
tiable with a continuously di↵erentiable weighting function ✓.
Subsituting Equation 3.4 into Equation 3.3, the partial deriva-
tive of f(x) w.r.t. xi:

@f(x)
@xi

= (
@b(x)T

@xi
A�1B �A�1 @A

@xi
A�1B + b(x)TA�1 @B

@xi
)fi

(4.9)

where

A =
X

j

✓(dj)b(xj)b(xj)
T ,

@A
@xi

=
X

j

@✓(dj)
@xi

b(xj)b(xj)
T ,

B =
X

j

✓(dj)b(xj),
@B
@xi

=
X

j

@✓(dj)
@xi

b(xj),

(4.10)
and j is the index of the sampling data points.

4.2 Sensitivity of the objective function

Common objectives of structural design problems include min-
imizing the compliance or maximize the sti↵ness of the struc-
ture, minimizing the maximum stress within the restructure,
matching the deformation profile of the structure to design a
compliant mechanism, to list a few. In this section, we focus on
the problem of designing the material property field minimiz-
ing the compliance of a structure. The designed material prop-
erty field will be realized through octet truss lattices, whose
e↵ective elasticity tensors exhibit cubic symmetry and can be
adequately described by Young’s modulus E, shear modulus
G, and Poisson’s ratio ⌫. Also, the design is constrained by the
total volume of the material. The elasticity tensor with cubic
symmetry takes the form:

C =

2

6666664

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C33 0 0
0 0 0 0 C33 0
0 0 0 0 0 C33

3

7777775
, (4.11)

where

C11 =
E(1� ⌫)

(1 + ⌫)(1� 2⌫)
, C12 =

E⌫
(1 + ⌫)(1� 2⌫)

, C33 = G

(4.12)

It is straightforward to derive @(C)
@(E) ,

@(C)
@(G) , and

@(C)
@(⌫) . We note

that the partial derivative w.r.t to volumen fraction is zero as C
is not a function of the volume fraction of the lattice structure.
Figure 3 shows the optimized material property fields of a cen-
tilever beam. The designed distribution of e↵ective property
will be realized by octet truss lattices.
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(a) Volume fraction. (b) Young’s modulus.

(c) Shear modulus. (d) Poisson’s ratio.

Figure 3: Optimization results of coarse scale mateiral property fields of a cantilever beam. Elements with volume fractions less
than 20% are not shown in (a).

5 Conclusion

In the present work, we proposed the novel concept of the ma-
terial property envelope to facilitate the design of multiscale
structures with architected materials. The material property
envelope encapsulates the attainable e↵ective material prop-
erties of a given material structure family and interfaces the
coarse and fine scales by constraining the combinations of the
competing material properties. A sampling and reconstruction
approach is proposed to model the MPE numerically. When
used as constraints in design optimization, the MPE is repre-
sented as a continuous scalar function over the material prop-
erty space of interest and provides the analytical partial deriva-
tives to allow the optimization problem to be solved more ac-
curately and e�ciently.

By decoupling design parameters of fine-scale material struc-
tures from the coarse scale design and optimization, the novel
interface significantly reduces the complexity while improving
the scalability of multiscale design problems. The proposed
formulation provides a mechanism to compare multiple families
of material structures as well as classical engineering materials.
Multiple material families can work together to enable a large
design space through the union of MPEs. An interchangeable
design becomes possible through the intersection of MPEs from
multiple material families.
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Geometrically Smooth Catmull-Clark Spline Surfaces
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Abstract

Subdivision schemes such as Catmull-Clark scheme are pow-

erfull tools to produce smooth surfaces that can be easily con-

trolled from a coarse mesh. They became very popular in graph-

ics and animation for their capacities to control easily shapes.

However from a geometric modeling point of view, they have

some drawbacks: At extraordinary vertices, they are composed

of infinitely many rings of piecewise polynomial surfaces and

have no explicit analytic representation. Though the limit sub-

division surface is smooth, it may not be curvature continuous

around an extraordinary vertex [6].

We describe a new explicit scheme to compute a smooth piece-

wise polynomial surface from a quadrangular meshes. The con-

structed surface is geometrically smooth everywhere and C2
ex-

cept in the neighborhood of extraordinary vertices. The polyno-

mial patches associated to the faces of the quadrangular mesh

are bi-quintic Bézier parameterisations. The surface interpo-

lates the Catmull-Clark subdivision surface at the limit points

of the vertices of the quad mesh. It has the same tangent

plane at these points. Therefore, it is a G1
approximation of

the Catmull-Clark subdivision surface[4]. The Catmull-Clark

scheme is used to construct the support of the surface. A de-

gree elevation step and a smoothing step are then applied to

obtain the geometrically smooth Catmull-Clark spline surface.

These constructions are described explicitly by masks and do

not required the solution of linear systems or to solve any opti-

misation problem.

We also present a new scheme to compute a basis of the space of

geometrically smooth functions on the quadrangular mesh. G0

basis elements are first constructed. The G1
basis is obtained

by a smoothing step. We describe explicit masks to compute

these elements from the G0
elements.

Some recent works propose methods to compute high quality geo-

metrically smooth surfaces over quadrangular meshes. The con-

struction of G2
surfaces is investigated by solving a constraint

minimization problem, using bi-septic patches in [5] or using bi-

quintic patches in [3]. In [2], [1], the G1
surface construction is

guided by bi-quintic or rings of bi-quartic Bézier surfaces that

minimize some energy. Thus, these constructions involve com-

plex and non-explicit schemes for producing the G1
surfaces.

In our smoothing method, instead of computing smooth guide

surfaces, we use the Approximate Catmull-Clark surface as a

guide and project it explicitly on the space of G1
surfaces. This

direct and simpler approach provide surfaces of good quality as

we will see in the experimentation results.

1 Gluing data

The geometrically smooth constraint corresponds to the follow-

ing relations: 8u 2 [0, 1],

f1(u, 0) = f0(0, u)
a0(u)

@f1
@v (u, 0) = a1(u)

@f0
@u (0, u) + a2(u)

@f0
@v (0, u)

Figure 1: Geometric continuous Catmull-clark surface like a

triangular saddle: The left picture represents the surface, in

the right the Gauss curvature, and in the left the Isophotes

representation

Figure 2: Bi-quintic Bézier patches

wheref1 = f�1 , f0 = f�0 are the restrictions of f on the faces

�0, �1.

we will assume that each singular vertex is isolated from

the other singular vertices by at least one layer of ordinary

vertices, and we will use the following glueing data along an

edge ⌧ = (�0, �1): a0(u) = 1, a1(u) = �1 and

• if v(�0) 6= 4 and v(�1) = 4, a2(u) = c(�0)(1� u)2,

• if v(�0) = 4 and v(�1) = 4, a2(u) = 0.

where v(�) is the valence at the vertex � and c(�) = cos( 2⇡
v(�) ).

the resulting relations between the control points are repre-

sented in Fig. 3.

2 G1 moothing algorithm

After applying the Catmull-Clark algorithm and elevation the

degree of the Bézier patches to Bi-5, we project the control

points configuration around each singular vertex onto the G1

constraints in the following way (we use the notation of Fig.

5):

• For each k 2 1 . . . v we compute: bk+1
0,1 = �1b

k
0,0 + �2 b

k
0,1 �

bk�1
0,1 with �1 = 2� 2c ,�2 = 2c.

• If the vertex is even for each k 2 1 . . . v we compute:

bk2,0 = �(�1)
k P

i=1..v(�1)
ibi1,0

+(�1)
k P

i=1..v2
(µh2i+1

2,0 + µ0h2i
2,0)

where � =
5
4v (1�

1
c ), µ = (1� 1

v ), µ
0
= (1+

1
v ). This guar-

anties the solvability of the ”enclosing constraint”, then
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q0,1 =2 (1� c) p0,0 + 2 c p1,0 � p0,1 (1.1)

q1,1 + p1,1 =2/5 c p0,0 + 2 (1� c) p1,0 + 8/5 c p2,0 (1.2)

q2,1 + p2,1 =� 1/5 c p0,0 + c p1,0 + 2 (1� c) p2,0 + 6/5 c p3,0 (1.3)

q3,1 + p3,1 =2 p3,0 � 1/5 c p4,0 + 1/5 c p5,0 (1.4)

p3,0 =� p0,0/10 + p1,0/2� p2,0 � p4,0/2 + p5,0/10 (1.5)

q4,1 + p4,1 =2 p4,0 (1.6)

q5,1 + p5,1 =2 p5,0 (1.7)

Figure 3: Relations between the coe�cients of two bi-quintic

Bézier patches around an edge.

for each k 2 1 . . . v we compute also:

bk1,1 = b10,0ve +

X

i=1..v2

↵i(b
i+k
1,0 + bk�i+1

1,0 )

+

X

i=1..v2

�i(b
i+k
1,0 + bk�i+1

1,0 )

+�0h
k
1,1 +

X

i=1..v

�i(h
k
1,1)

↵k = (�1)
k+1

(2� 2c)
v� k
2v

,

�k = (�1)
k+1 8c

5

v� k
2v

,

�0 = �v� 1

v
,

�k = (�1)
k 1

v
,

ve =

v2 � 2[
v
4 ]� 2 +

P
i=0..v/2(�1)

i

2v

• If the valence is odd,for each k 2 1 . . . v we compute :

bi1,1 = v0 b
1
0,0

+
P

k=1..i�1(�1)
k+i+1

(✓bk1,0 + ⇠bk2,0)
+
P

k=i..v(�1)
k+i

(✓bk1,0 + ⇠bk2,0)

where v0 =
c
5 , ✓ = (1� c) and ⇠ =

4
5 c.

• For each k 2 1 . . . v we compute: bk3,0 =
1
10 bk0,0 � 1

2 bk1,0 +

bk2,0 +
1
2 bk4,0 � 1

10 bk5,0

• For each k 2 1 . . . v we compute:

bk+1
2,1 =

1

2
hk+1
2,1 � 1

2
hk
2,1 + s1 b

k
0,0 + s2 b

k
1,0 + s3b

k
2,0 + s4 b

k
3,0

bk+1
3,1 =

1

2
hk+1
3,1 � 1

2
hk
3,1 + bk3,0 � s1 b

k
4,0 + s1 b

k
5,0

s1 =
1

10
c, s2 =

1

2
c, s3 = (1� c) , s4 =

3

5
c

• The rest of the constraints are satisfied automatically by

the Approximate Catmull-Clark algorithm.

Each one of the steps above is destinated to make sure the

control points configuration verify one of the relations in .

Figure 4: Indices of the b-spline coe�cients around a vertex

with the convention that bki,0 ⌘ bk�1
0,i for i 2 0 . . . 5, k = 1, . . . , v.

Figure 5: The Global smoothing algorithm from meshes to a

smooth surface.
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Abstract

We present a method for reconstructing a surface from a point
set given by multiple range scans. Usually, we think of this
surface as a two dimensional manifold embedded in three-
dimensional space and the points being samples of this man-
ifold. The key idea of our approach is to construe range scans
of a physical object as a set of charts which together form an
atlas of the manifold which corresponds to the scanned object.
Each chart defines a two-dimensional parametrization of a re-
gion of the manifold and thereby of the point samples. This
parametrization allows for an e�cient triangulation of one re-
gion. For the domain of these charts, a natural choice are the
image planes of the individual depth images.

1 Introduction

Reconstruction of 3D surfaces from optically acquired data is
a big and well-explored field [1]. Overall, methods for 3D re-
construction can be classified as combinatorial if the original
points are connected or volumetric when the surface emerges as
the level-set of a characteristic function f : R3 ! R. The Ball
Pivot Algorithm [2] is an example of a combinatorial method
whereas Poisson reconstruction [9] is a well-established exam-
ple of a volumetric method.

Volumetric methods have two features which have tradition-
ally been considered merits: it is easy to ensure that holes (ar-
eas with missing points) are closed, and they suppress noise.
However, volumetric methods inherently resample the surface
since the output mesh is created using a polygonization method
such as marching cubes [12]. To accurately capture geometry,
we often produce highly detailed meshes, and that can lead to
both oversampling and overfitting (see Figure 5).

These are the main reasons we are looking for a combinatorial
approach. Our starting point is the observation that the optical
acquisition of an object almost always requires scanning it from
multiple directions in order to capture the entire surface. In
an ideal setting, each scan of the surface would cover a part of
the surface that does not overlap that of any other scan, but
the opposite is generally true: to ensure proper coverage, scans
overlap significantly.

Arguably, this is what makes 3D reconstruction somewhat
challenging. Usually, we can reconstruct a surface of a single
sub-scan only by 2D triangulation of the points, but then we
are left with several partially overlapping triangle meshes. Per-
haps, for this reason, most 3D reconstruction methods tend to
merge the scans into a single point cloud. We do almost the
opposite: our approach is to segment points into disjoint re-
gions where each region corresponds to one of the sub-scans,
illustrated in Figure 2. In the image (a) the colors are mixed
because the scans overlap, but after segmentation (b) we end
up with three point-clouds that cover distinct regions of the
surface. Yet each segment corresponds to a sub-scan, and we

can reconstruct a surface mesh of the segment simply by 2D
triangulating the corresponding point set. What remains is to
stitch the seams between each of these meshes, producing the
results shown in (e).

1.1 Related Works

Our work may seem similar to the original zippering approach
[16]. However, zippering removes triangles (along with their
vertices) from the boundary of each sub-scan as long as they
overlap while we reassign rather than remove points.

In [13] the aim is to construct a global 2D parametrization
leading to an optimization problem. In contrast to this, we only
have to find the transition functions between the input depth
images and show that this is su�cient for 3D reconstruction.

Conceptually, our work is perhaps more closely related to
tangent plane-based triangulation methods such as [4] which
also exploit that surfaces are 2-manifold.

2 Method

Almost invariably, we reconstruct a 3D model from several
scans (obtained by optical acquisition) that combine to cover
the entire model. In the following, we will use the term discrete
surface map (DSM) to refer to points in the frame of a single
scan. A DSM is a projection of parts of a 3D model onto a 2D
domain. Thus, a DSM can be seen both as a discrete chart of
the scanned object and as a collection of points for which we
have 2D positions in the image domain as well as 3D positions.
The domain of each DSM is the corresponding image plane.

We propose to employ the 2D domains of these DSMs as
domains for 2D Delaunay triangulation and to perform point
cloud reconstruction by subsequently combining these trian-
gulations. Immediately, this seems problematic. It would not
lead to a coherent mesh if we triangulated the individual DSMs.
The reason being that they overlap, and we would be left with
the tedious problem of merging partially overlapping meshes –
as illustrated in Figure 1a which shows three scans (blue, or-
ange, and green). Since the three scans are taken from nearby
angles, the point clouds almost completely overlap.

In order to approach the problem, we observe that given
two DSMs which overlap, say A and B (illustrated Figure 2),
it must be possible to map a point p from the domain of A
to the domain of B. In Section 2.3, we propose a method for
constructing transition functions that map between pairs of
image domains. However, we can also see DSMs as point sets,
and the transition functions allow us to reorganize the point
sets such that a point which originally belonged to DSM A
is mapped to DSM B and then re-assigned to the point set
belonging DSM B.

We make use of this by re-assigning points in the overlapping
regions to one of the contributing DSMs. Gathering all points
sampling a specific patch in one DSM, we reduce the problem
to 2D Delaunay triangulation of those patches (see Figure 1b
and 1c).
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(a) Input points (b) Segmentation (c) Triangulation (d) Overlap removal (e) Seam stitching (f) Final mesh

Figure 1: Steps of the algorithm – (a) the di↵erent scans are shown in distinct colors, (b) colors represent the assigned image
domain, (c) triangulation of partial point cloud assigned to one specific domain, (d) triangulation after removing overlap with
other domains, (e) pruned sub-meshes in grey and consensus triangles bridging the gap in red, (f) final result after hole filling.

A B
p

pA
pB

Figure 2: Given a pair of DSMs A and B, we can map a point
from its domain position in A, pA, to its domain position in B,
pB .

2.1 Smoothing

We assume the DSMs are globally and locally aligned, typically
using a variant of the ICP algorithm [14]. However, still the
surfaces are noisy, and the alignment cannot be assumed to be
perfect. Our approach is to establish a (non-meshed) common
surface that integrates information from all scans. Therefore we
pre-process our data using a method formean curvature motion
(MCM) smoothing of point clouds due to [8] – also used in other
combinatorial methods like [7, 3]. It is an iterative smoothing
process based on the heat equation:

dX
dt

= h(X)N(X) , (2.1)

where the positionX 2 R evolves in normal directionN propor-
tional to the mean curvature h over time t. It has been shown
in [8] that this can be estimated by iteratively projecting each
point onto its local total least squares regression plane.

It should be noted that akin to [8] the initial smoothing only
serves the purpose of reducing noise for the triangulation and
does not introduce smoothing in the final result.

2.2 Segmentation

We need to resort the point sets into non-overlapping pieces.
We base our cost function on the information about the ori-
gin of each point. For structured light and laser range scan-
ners, this is the scan ID together with the extrinsic parameters.
Compared to using normal information it has the following ad-
vantages:

• It is resilient to noise as it is given by the scanning process
and not derived from noise data.

• It e↵ectively provides us with visibility information such
that we do not need to explicitly check for occlusion, which
can only be done approximately for a point cloud.

We formulate the segmentation as a graph labeling problem
with the points as nodes and connecting the k nearest neighbors
with edges. The labels l we assign correspond to the scan IDs
and their image planes.

Each point Xi originates from a scan s(Xi) 2 S. Our seg-
mentation assigns a label li 2 S to each point, which determines
the image plane the point is projected into for triangulation.
The segmentation minimizes the following energy function via
a minimum cut on the neighborhood graph:

E =
X

i

0

@ul(xi) + �
X

j2Ni

li 6=lj

1

A , (2.2)

where the first term is based on the count of scan IDs Cl(xi) =
{xj |xj 2 Ni, s(xj) = l} in the neighborhood:

ul(xi) = 1� Cl(xi)
maxm Cm(xi)

(2.3)

and the second term assigns a penalty for each point that gets
assigned a label di↵ering from its original scan ID.

Finding the solution to this multi-label problem is done via
a minimum graph cut with alpha-expansion [10]. The results
are shown in Figure 1b and 3, where we observe that the colors
are now separated into contiguous regions. Perceived as charts,
the DSMs are unchanged, but the point sets associated with
each DSM no longer overlap with points sets associated with
other DSMs.

2.3 Transition functions

After assigning each point to a specific DSM, we need to find
its 2D position. In order to be more resilient to noise, we do
not merely project each point. For each image domain, we
construct an auxiliary 2D Delaunay triangulation of the points
originating from the corresponding image. By that, we are cre-
ating a coarse approximation of the manifold in the embedding
space and a corresponding parametrization of the image plane.
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Figure 3: Segmentation into individual domains

BA

pA pB

XA XB

Figure 4: Going from image domain A to B via the connection
of XA and XB (depicted in red) in embedding space.

In Figure 4 a triangulation of the points in image domain
A and B is sketched in conjunction with two triangles of the
surrogate surface resulting from that. When mapping a point
pA from A to B, we determine the barycentric coordinates in
A. From those, we can compute a position XA on the surrogate
surface in 3D. The closest point to XA on the surrogate surface
corresponding to B denoted as XB in Figure 4 connects the two
DSMs. With the barycentric coordinates of XB we can then
determine the final 2D position on B. This procedure defines
our transition functions.

2.4 Seam closing

The remaining task is to join the partial meshes. To address
this, we add spatially close points to each part of the segmen-
tation seen in Figure 1b, before triangulating them separately
(Figure 1c). This allows us to easily prune each of the result-
ing sub-meshes by only keeping the triangles connecting points
initially labeled as belonging to this part. The result of this
pruning step is shown in Figure 1d.

From the set of triangles removed by the pruning, we only re-
tain those triangles connecting one or two points of the original
part, e.g., the blue one in Figure 1, with one of the other parts.
After processing all segments, we exploit that there tends to be
significant consensus [15] between the triangulations in these
overlap regions. The consensus triangles connecting the seg-
ments are added to the mesh (depicted red in fig. 1e). Lastly,
the remaining small holes are closed. The final result is illus-
trated in Figure 1f.

3 Results

We compare our method to other combinatorial methods,
namely SuperCocone [5], RobustCocone [6], Co3ne [3], scale
space meshing (SSM) [7]. Also we compare to Screened Poisson
Reconstruction (SPR) [9] as a widely used volumetric method.

SPR, depth 10 SPR, depth 11 SSM Ours
Vertices 625k 1.8M 690k 686k
Faces 1.2M 3.6M 1.4M 1.4M

Table 1: Number of vertices and triangles in the reconstructed
surface of the Owl model.

Figure 5: Closeups of the triangulations. From left to right:
Screened Poisson Reconstruction with maximum octree depth
of 10, same with a depth of 11, and our method.

Figure 6: Bunny with added noise of std. 0.3. From left to
right: SuperCocone, RobustCocone, Screened Poisson Recon-
struction with maximum octree depth of 8, Scale Space Mesh-
ing, Co3ne, and our method.

In Figure 5 and from Table 5 it becomes evident that in order
to capture the fine details it is necessary to increase the overall
number of points in the final mesh if a volumetric method like
SPR is used. This results in an output mesh that models noise
along with the details. Our method and Scale Space Mesh-
ing (SSM) use approximately the same number of points and
faces. Whereas Screened Poisson Reconstruction (SPR) with
a maximum octree depth of 11 uses more than twice as many
primitives.

This problem becomes even more apparent when some ad-
ditional noise is added, which can be seen in Figure 6 and 7.
The SuperCocone method completely breaks down and is not
able to recover a coherent surface at all. RobustCocone only
uses a fraction of the points and in doing so misses a lot of the
details. Poisson reconstruction either has to reduce the reso-
lution or overfits modeling the noise. The ball pivoting step
in SSM struggles to include all points leaving holes in the sur-
face. Co3ne includes all points but doing so at the expense
of topological noise which is very hard to remove with post-
processing.

4 Discussion and Future Work

A good case could be made that surface reconstruction from
optical scans is a fairly easy problem in the sense that there are
many algorithms. However, generally volumetric methods con-
flate reconstruction and smoothing while also resampling the
surface – often leading to an increased number of parameters
(vertices) if we aim for the highest level of precision as illus-
trated in Figure 5. Our approach neither increases the number
of points nor does it introduce smoothing.
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Figure 7: Closeups of the facade scan. From left to right:
SuperCocone, Screened Poisson Reconstruction with maximum
octree depth of 10, and 11, Scale Space Meshing, Co3ne, and
our method. (RobustCocone runs out of memory)

Nonetheless there are challenges in the current approach,
which we hope to solve in the future:

• When stitching two segments the set of agreeing triangles
for di�cult camera configurations is rather small, resulting
in larger holes in the mesh.

• Although the segmentation is resolving the occlusions well,
the fact that we need to add overlaps and restrict inter-
segment connections to these, makes deep concavities chal-
lenging.

• Thin structures in the geometry pose a problem to the
smoothing step, which results either in connections be-
tween very dissimilar scan directions or points not being
smoothed at all. This problem is also present in [8] and
related methods.

• Finding a good balance between the data and the smooth-
ing term for segmentation has been di�cult. Shallow min-
ima in the cost function for regions with multiple or no
predominant scanning directions require additional regu-
larization. Whereas, too much smoothing causes occluded
regions to be falsely assigned.

Also processing times could be reduced at various steps of the
algorithm. The graph cut for segmentation only uses a single
core although parallel approaches for multi-label segmentation
have been proposed [11]. Furthermore, we aim for a rather
smooth segmentation and do not depend on the exact location
of the borders in between. This would allow us to reduce com-
putational complexity by only using a subset of the points and
transferring the label to the whole set afterwards.

Exploring the applicability of our transition function to other
problems like mapping color and other quantities derived from
2D images would also be an interesting future direction.
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Pierre Alliez, Gaël Guennebaud, Joshua A. Levine, Andrei
Sharf, and Claudio T. Silva. A survey of surface recon-
struction from point clouds. Computer Graphics Forum,
36(1):301–329, Mar 2016.

[2] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball-pivoting algorithm for surface recon-
struction. IEEE Transactions on Visualization and Com-
puter Graphics, 5(4):349–359, Oct 1999.

[3] Dobrina Boltcheva and Bruno Lvy. Surface reconstruc-
tion by computing restricted voronoi cells in parallel.
Computer-Aided Design, 90:123 – 134, 2017. SI:SPM2017.

[4] David Cohen-Steiner and Frank Da. A greedy delaunay-
based surface reconstruction algorithm. The Visual Com-
puter, 20(1):4–16, Apr 2004.

[5] T. K. Dey, J. Giesen, and J. Hudson. Delaunay based
shape reconstruction from large data. In Proceedings IEEE
2001 Symposium on Parallel and Large-Data Visualiza-
tion and Graphics (Cat. No.01EX520), pages 19–146, Oct
2001.

[6] Tamal K. Dey and Samrat Goswami. Provable surface
reconstruction from noisy samples. In Proceedings of the
Twentieth Annual Symposium on Computational Geome-
try, SCG ’04, pages 330–339, New York, NY, USA, 2004.
ACM.

[7] Julie Digne. An implementation and parallelization of the
scale space meshing algorithm. Image Processing On Line,
5:282–295, Nov 2015.

[8] Julie Digne, Jean-Michel Morel, Charyar-Mehdi Souzani,
and Claire Lartigue. Scale space meshing of raw data
point sets. Computer Graphics Forum, 30(6):1630–1642,
Feb 2011.

[9] Michael Kazhdan and Hugues Hoppe. Screened poisson
surface reconstruction. ACM Transactions on Graphics,
32(3):1–13, Jun 2013.

[10] V. Kolmogorov and R. Zabih. Computing visual corre-
spondence with occlusions using graph cuts. Proceedings
of the Ieee International Conference on Computer Vision,
2:508–515, 2001.

[11] V. Lempitsky, C. Rother, S. Roth, and A. Blake. Fu-
sion moves for markov random field optimization. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 32(8):1392–1405, Aug 2010.

[12] William E. Lorensen and Harvey E. Cline. Marching
cubes: A high resolution 3d surface construction algo-
rithm. Proceedings of the 14th annual conference on Com-
puter graphics and interactive techniques - SIGGRAPH
’87, 1987.

[13] Nico Pietroni, Marco Tarini, Olga Sorkine, and Denis
Zorin. Global parametrization of range image sets. In
ACM Transactions on Graphics (TOG), volume 30, page
149. ACM, 2011.

[14] S. Rusinkiewicz and M. Levoy. E�cient variants of the
icp algorithm. In Proceedings Third International Confer-
ence on 3-D Digital Imaging and Modeling, pages 145–152,
2001.

[15] Ryan Schmidt and Patricio Simari. Consensus meshing.
Computers & Graphics, 36(5):488 – 497, 2012. Shape Mod-
eling International (SMI) Conference 2012.

[16] Greg Turk and Marc Levoy. Zippered polygon meshes
from range images. Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques -
SIGGRAPH ’94, 1994.

IGS 2019 Poster 4



CT-shape: Coordinated triangle based reconstruction from
dot patterns and boundary samples

Safeer Babu Thayyil 1, Amal Dev Parakkat 2, and Ramanathan Muthuganapathy 1

1Advanced Geometric Computing Lab., Department of Engineering Design, Indian Institute of Technology Madras, India
2Computer Science Laboratory of Ecole Polytechnique (LIX), Ecole Polytechnique CNRS, Paris, France

Abstract

Given a set of points S 2 R2
, reconstruction is a process of

identifying the boundary edges that best approximates the set of

points. In this paper, we propose a unified algorithm for recon-

struction that works for both dot patterns as well as boundary

samples. The algorithm starts with computing the Delaunay

triangulation of the given point set and edges are iteratively re-

moved based on the structure of a pair of triangles. Further,

we also propose additional criteria for removing edges based on

characterizing a triangle and using degree constraint. Unlike

the existing algorithms, the proposed approach requires only a

single pass to capture both inner and outer boundaries irre-

spective of the number of objects/holes. Moreover, the same

criterion has been employed for both inner and outer bound-

ary detection. The experiments show that our approach works

well for di↵erent kinds of inputs. We have done extensive com-

parisons with state-of-the-art methods for various kinds of point

sets including varying the sampling density and distribution and

found to perform better or on par with them.

1 Introduction and related works

Given a set of points S lying on a plane, sampled from an
object, the reconstruction is a task of embodying the bound-
ary edges (inner and outer boundaries) that best approximates
its geometrical identity. In this paper, the point samples are
assumed to be derived from a smooth closed curve(s). When
the sample points are derived only from the boundaries of the
curve(s) (Figure 1(a)), termed as boundary samples, then the
reconstruction is generally called as curve reconstruction (Fig-
ure 1(b)). On the other hand, sample points, in addition to
boundaries, can be acquired from the interior to the curve(s)
(Figure 1(c)). This sampling is termed as dot pattern and
the corresponding reconstruction is called shape reconstruction

(Figure 1(d)). Devising a unified algorithm that works for both
types of input point sets again increases the level of hardness.

Figure 1: (a) Boundary sample (b) Reconstruction from bound-
ary sample (c) Dot pattern (d) Reconstruction from dot pat-
tern.

Reconstruction algorithms are taxonomised in di↵erent ways.
It can be based on Delaunay triangulation and non-Delaunay
triangulation or curve/shape/unified reconstruction. Some al-

Table 1: Strengths and weaknesses of di↵erent reconstruction
algorithms
Algorithm Unified Hole # Pa-

rameters
Multiple
Object

Unstructured

Hole

↵-shape [4] Y Y 1 Y Y
Crust [1] N Y 0 Y Y
nn-crust [2] N Y 0 Y Y
�-shape [3] Y N 1 N NA
simple-
shape [5]

Y N 3 N NA

deGoes et.
al [6]

N Y 1 Y Y

RGG [11] Y Y 0 N N
WDM-crust
[12]

N N 0 Y N

ec-shape [7] Y Y 0 N Y
HNN-crust
[8]

N Y 0 Y N

Crawl [10] N Y 0 Y Y
Peel [9] N Y 0 Y Y
Our Algo Y Y 0 Y Y

gorithms are designed only for outer boundary detection while
others are designed for both outer boundary as well as inner
boundary.

Table 1 summarizes the strengths and weaknesses of a few
of the reconstruction algorithms. Even though there are a lot
of works in the area of reconstruction, not all algorithms can
handle both types of input - dot patterns and boundary sam-
ples. Examples for unified algorithms are ↵-shape, RGG and
ec-shape. Though �-shape and simple-shape can handle both
dot patterns and boundary samples, it can generate only a sim-
ple closed curve as output and cannot handle holes. Though
unified algorithms such as RGG, ec-shape can capture holes,
RGG can work only for restricted hole structures and ec-shape
uses di↵erent strategies to capture holes. Crawl and peel can
capture di↵erent shaped holes but can work only for boundary
samples.

↵-shape can work for both types of input and independent
of the hole structure but requires a parameter ↵ to be tuned.
Other approaches such as �-shape, simple-shape are also para-
metric algorithms whereas RGG, ec-shape, crawl and peel are
non-parametric algorithms. It is quite a tedious task to tune
the parameter(s) to get the desired output. RGG, ec-shape,
and �-shape cannot handle multiple objects.

In this paper, we propose a unified algorithm for the re-
construction of outer boundaries as well as inner boundaries
without any user intervention. The following are our major

contributions: (a) A unified approach for dot pattern and
boundary samples with and without holes. (b) The algorithm
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Figure 2: (a) A point set. (b) DT of the point set. (c) marked shared edges of all CT (in cyan). (d) Skinny triangles (in red). (e)
marked edges of skinny triangles (in magenta). (f) Graph formed after removing marked edges. (g) Graph after the application of
degree constraint.

Figure 3: (a) Neighboring triangles 4abc & 4bdc with shared
edge bc. (b) Coordinated triangles 4abc & 4bdc with circum-
centers c1 & c2 lying on the same side of the shared edge bc.

uses the same strategy for capturing both hole boundary as
well as outer boundary. (c) Our algorithm needs only a single
pass irrespective of the number of holes/objects.

2 Definitions

DEFINITION 1 Neighboring triangles: Two triangles are

said to be neighboring triangles if they share an edge (Figure

3(a)).

DEFINITION 2 Coordinated triangles: Neighboring trian-

gles are termed as coordinated triangles if their circumcenters

lie on the same side of the shared edge (Figure 3(b)).

DEFINITION 3 Skinny triangle: A skinny triangle is a thin

acute triangle whose base is much smaller than its height.

DEFINITION 4 Degree constraint: Only two shorter edges

are retained from a vertex (point) and all other edges are re-

moved from that vertex (point).

3 Algorithm

For a given point set (Figure 2(a)), the algorithm starts with
computing the DT of the given point set (Figure 2(b)).

3.1 Marking a shared edge in CT

For each triangle T 2 DT, the algorithm checks for CT with
respect to T. If CT exist, the shared edge between those two
triangles is marked (cyan edges in (Figure 2(c)).

3.2 Marking edges from a skinny triangle

Using an angle of 9� for the smallest angle in skinny triangles
(shown in red in Figure 2(d)), their two long edges are marked.
Figure 2(e) shows all the marked edges so far, in cyan and
magenta.

3.3 Applying degree constraint

A graph G is formed from the set of unmarked edges from DT
(Figure 2(f)). Since the edges in DT are removed arbitrarily
based on CT and skinny triangles, there are possibilities of
the presence of non-manifold edges. In order to maintain the

Algorithm 1 Complete Reconstruct(S)

Input: Input point set, S.
Output: Reconstructed Output R.
1: Construct Delaunay triangulation, DT (S).
2: for each triangle T do

3: Take all three neighboring triangles and check whether
they constitute coordinated triangles.

4: Mark the shared edges for all coordinated triangles.
5: Identify the skinny triangles having less than 10� and

mark the two longest edges.
6: end for

7: Create a graph G with all unmarked edges of DT (if all
three edges are unmarked, they are not considered).

8: Apply degree constraint on all vertices of G.
9: return G as CT-shape

output as manifold (for e.g., if there exists only outer boundary,
then it should be topologically equivalent to a circle), we impose
a degree constraint (Definition 4) on each vertex. Figure 2(g)
shows the graph, which is the final reconstructed boundary
(in blue) after checking for degree constraint for the point set
shown in Figure 2(a).

The pseudo-code for the algorithm for reconstruction, given
a set of points S is delineated in Algorithm 1. The running
time complexity of the algorithm can be shown to be O(n log n)
where n is the number of points in S.

4 Results & Discussions

Our algorithm (Algorithm 1) is implemented in C++ with
CGAL (Version: 4.6) libraries and visualized in OpenGL and
tested in MacOS 10.12.3. The input point sets (dot patterns
and boundary samples) consist of points from simple objects,
objects with multiple holes, objects with multiple components,
objects with non-divergent concavities etc. The algorithm has
also been tested with di↵erent sampling densities and distribu-
tions. Figure 4 shows some of the results of our algorithm for
various dot patterns and boundary samples. The figure shows
that our algorithm can generate good results for both kinds of
inputs with divergent features.

4.1 Comparison with existing algorithms

Here we considered five algorithms (↵-shape, �-shape, simple-
shape, RGG, ec-shape with ours) for dot pattern and nine
algorithms (↵-shape, �-shape, simple-shape, RGG, ec-shape,
Crawl, HNN-crust, Peel, WDM-crust with ours) for boundary
samples for the sake of comparison. It may be noted that HNN-
crust, WDM-crust, Crawl and Peel do not work for dot patterns
and hence they have been included only for the comparison of
results for boundary samples as input. In all the comparison
results, we use circles to denote regions where boundaries are
not well-approximated.
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Figure 4: Results of our algorithm (CT-shape) for various features like concavity, multiple holes (deer has two holes), multiple
components etc. Input DP = Input dot pattern, Input BS = Input boundary sample, Output = Output of our algorithm.

Figure 5: Multiple objects (dot pattern): Results of (a) ↵-shape
(b) �-shape (c) simple-shape (d) RGG (e) ec-shape (f) our
result (CT-shape). Some algorithms (as indicated in circles)
have resulted in single object even when multiple objects are
present.

4.1.1 Qualitative Comparison

Capturing multiple objects is a challenge for many algorithm
as they work only for single component only. Figures 5 and
6 show the comparison results for multiple objects. Figures
7 and 8 show the result of various algorithms for a point set
sampled from an object with multiple holes. Our algorithm has
captured all the holes reasonably well.

4.1.2 Quantitative Comparison

We made use of L2-error norm [3] to compare the results, which
is defined as (C and P are the ground truth and reconstructed
result respectively):

L
2 =

area((C � P )
S
(P � C))

area(C)
(4.1)

Figure 9 shows the point density versus L
2 error plots of

our experimentation on various point sets extracted from the
boundary of the country shapes (Paraguay and Spain) for both
dot patterns and boundary samples. From Figure 9, it is clear
that our algorithm works better or on par with various unified
reconstruction algorithms.

Figure 6: Multiple objects (boundary sample): Results of (a)
↵-shape (b) �-shape (c) simple-shape (d) RGG (e) ec-shape
(f) Crawl (g) HNN-crust (h) Peel (i) WDM-crust (j) our result
(CT-shape). A few of the algorithms (as indicated in circles)
have resulted in single object even when multiple objects are
present.

Figure 7: Object with holes (dot pattern): Results of (a) ↵-
shape (b) �-shape (c) simple-shape (d) RGG (e) ec-shape (f)
our result (CT-shape). �-shape and simple-shape capture only
outer boundaries. RGG works only if the holes are body-arm
structured. ec-shape overdigs the holes.

4.1.3 Varying point distributions

Figure 10 shows the comparison of our results with other unified
algorithms for various point distributions. The four instances
of point distributions we used for experimentation are: Dense
Boundary Dense Internal (DBDI), Dense Boundary Sparse In-
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Figure 8: Object with holes (boundary sample): Results of (a)
↵-shape (b) �-shape (c) simple-shape (d) RGG (e) ec-shape
(f) Crawl (g) HNN-crust (h) Peel (i) WDM-crust (j) our result
(CT-shape).

Figure 9: Exemplification of performance comparison on dif-
ferent point densities of di↵erent country shapes.

Figure 10: Results showing the performance of di↵erent algo-
rithms on various point distributions.

ternal (DBSI), Sparse Boundary Dense Internal (SBDI) and
Sparse Boundary Sparse Internal (SBSI). Our algorithm has
captured the details quite well except in the case of SPDI.

5 Conclusion

In this paper, we devised a unified reconstruction algorithm
and showed it works irrespective of the type of point set (dot
pattern or boundary sample). The algorithm is easy to im-
plement and proven to give good results under various point
densities and distributions. In contrast to other unified algo-
rithms, our algorithm needs only a single pass to detect the

boundaries (both inner and outer) irrespective of the number
of holes/objects. As a future work, we would like to extend the
algorithm to look into various other challenging tasks like han-
dling point sets with noise and outliers. We are also working on
the extension of the proposed algorithm to higher dimensions.
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1 Introduction

We present scikit-shape, a free open-source Python pack-
age for image segmentation and shape analysis, available at
http://scikit-shape.org. The package includes image segmen-
tation algorithms to detect distinct regions or objects and their
boundaries in given images. It also includes elastic shape
distance algorithms to compute dissimilarity scores of curve
boundaries for statistical shape analysis. The package builds
on NumPy and SciPy libraries, which provide an e�cient in-
frastructure for numerical computations [6]. It also interfaces
and interacts well with the image processing package, scikit-
image [11], and the machine learning package, scikit-learn [8],
so that it can be used as a powerful component of richer and
more general image and data analyses. In the following sec-
tions, we list and describe the algorithms that are included.

2 Image Segmentation

Image segmentation is the problem of identifying distinct re-
gions or objects and their boundaries in given images. It is a
fundamental problem in image processing, and a critical com-
ponent of many image analysis tasks. Locating cells in mi-
croscopy images or decomposing a material microstructure into
grains are a few example applications of image segmentation
among many others in sciences and engineering. As images
and specific instances of segmentation problems show a lot of
variability, many di↵erent approaches have been developed over
the recent decades. Our package includes segmentation algo-
rithms of three di↵erent types:
1) shape optimization of region boundaries,
2) evolution of phase field functions representing regions,
3) topology optimization of regions encoded as pixel labels.
All of these three approaches are executed as iterative opti-
mization [2, 3]. An initial guess for segmentation, i.e. a set
of curves, a phase field function, or initial assignment of re-
gion labels, is set by the user, or by an automatic initialization
routine. Then the optimization algorithms update the segmen-
tation iteratively until the optimal configuration is attained
(see Fig.1 for an example). This process is guided by one of
a set of specially-designed segmentation energies encoding how
well a given configuration (of boundary curves or phase field
function or region labels) capture the actual regions, objects,
or their boundaries in the image. There are several choices for
segmentation energies, those based on image edge criterion, on
image intensity contrast criterion, or on statistical considera-
tions. The segmentation energy can include terms to control
the smoothness of the boundaries and/or statistical priors

3 Image-based Meshing

Some applications require derived measurements based on the
image segmentation, and sometimes these derived measure-

ments are obtained by numerical simulations of the physics
on a simplicial mesh, i.e. triangulation in 2d, representing the
geometry of the structures in the image, based on the segmen-
tation. An example is the OOF software package for finite ele-
ment analysis of material microstructure physics, for which the
starting point is a high quality mesh obtained from the segmen-
tation [7]. To create such meshes, our package interfaces with
the TRIANGLE program, which produces high-quality trian-
gulations with theoretical guarantees [9]. These triangulations
conform perfectly to the region boundaries that are passed to
TRIANGLE by our package. An example of such a triangula-
tion is shown in Fig.2.

4 Shape Analysis

In many applications, one needs to quantitatively compare the
shapes of objects using shape dissimilarity or shape distance
scores. There are several alternative approaches to computing
shape distances. Our approach uses the elastic shape distance
framework of Srivastava et al. [10], and the elastic shape dis-
tance algorithm that we implement is the foundation of the
shape analysis capabilities enabled by our package. This shape
distance framework is particularly desirable for applications,
as it can handle natural variations of boundary shapes (e.g. all
maple leave boundaries are slightly di↵erent, but they all have
about the same shape). Moreover, the shape distance, as ex-
pected, is invariant to scaling, translation, rotation of boundary
curves, and can be based on tangents, curvature or angle func-
tion of the curves. Once the shape distance is computed, it can
be used in conjunction with other tools, such as spectral clus-
tering or kernel density estimation, to perform various statisti-
cal analyses. We provide an e�cient optimization algorithm to
compute the elastic shape distances. This algorithm leverages
fast algorithmic components, such as FFT-based curve align-
ment, fast dynamic programming for curve parameterization,
and integrates them in an e�cient optimization scheme [1, 4, 5].
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Figure 1: Some snapshots from the shape optimization of region boundary curves for segmentation. The image on the left contains
the initial curves. The image on the right is the final segmentation.

Figure 2: Triangulated meshes of the interior and exterior regions, based on the segmented boundary curves.

Figure 3: Grayscale visualization of the matrix of shape dis-
tances between pairs shape examples from the MPEG7 shape
benchmark data set.
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Abstract

This work proposes an algorithm for point set segmentation

based on the concept of Variational Shape Approximation

(VSA), which uses the k-means approach. It iteratively selects

seeds, grows flat planar proxy regions according to normal sim-

ilarity, and updates the proxies. It is known that this algorithm

does not converge in general. We provide a concrete example

showing that the utilized error measure can indeed grow dur-

ing the run of the algorithm. To reach convergence, we pro-

pose a modification of the original VSA. Further, we provide

two new operations applied to the proxy regions, namely split
and merge, which enqueue in the pipeline and act according

to a user-given parameter. The advantages over regular VSA

are independence of both a prescribed number of proxies and a

(manual) selection of seeds. Especially the latter is a common

drawback of region-growing approaches in segmentation.

1 Introduction

Point sets arise naturally in almost all kinds of three-
dimensional acquisition processes, like 3D laser-scanning and
have been recognized over 30 years ago as fundamental shape
for representation in computer graphics. In comparison to
meshes, they have a decreased demand in storage and have
the advantage to be the direct representation of the object as
obtained from acquisition devices, whilst lacking connectivity
information.

However, in many applications, large parts of the point set
carry redundant information. For example, a flat area of a
surface can be sampled sparsely compared to an area of high
curvature. The identification of such flat areas can be achieved
e.g. via segmentation. Cohen-Steiner et al. proposed the Vari-
ational Shape Approximation (VSA), [1]. The procedure seg-
ments a given mesh into a given number of regions approxi-
mated by proxies, which can be used for a simplified model. A
translation to point sets was done by Lee et al. [4] with a focus
on feature extraction.

In a survey of simple geometric primitives detection meth-
ods for captured 3d data, the authors of [3] find VSA to be a
method in particular suited to be run on individual algorithms
as opposed to in- or outdoor scene data. It is summarized as
an “automatic clustering” approach with low abstraction level
and medium data fidelity, which attains a good balance in terms
of e.g. speed, scalability, simplicity, and generality when com-
pared to other methods, see [3] for details.

Despite its advantages, the VSA procedure and its trans-
lations have several downsides. First, as [1] also states, the
procedure is not convergent in general, which is the same for
meshes and point sets alike. Second, the available variants as-
sume a prescribed number of proxies. Third, the quality of the
final segmentation depends on the choice of starting seeds for

the proxies. Our main contributions are:

• Provide an example of a growing error during the run of
the VSA algorithm which applies to meshes [1] and point
sets [4] alike.

• Presentation of a modified VSA version and proof of its
convergence.

• Description of two new operations, split and merge, in the
VSA pipeline, making the initial choice of a fixed proxy
number and manual seed selection unnecessary.

2 VSA Procedure

The VSA procedure partitions a surface S ✓ R3 into m 2 N
disjoint regions Ri ✓ S, tRi = S, where each region is associ-
ated a linear proxy Pi = (Ci, Ni) 2 R3 ⇥ S2, where Ci denotes
the center and Ni denotes an associated unit-length normal, i.e.
every proxy appears as a plane. After an initial seed selection
every region grows w.r.t. a metric given by

L2,1(Ri, Pi) =

Z

x2Ri

kn(x)�Nik2 dx,

where n(x) denotes the surface normal at point x 2 S.
Throughout the whole paper, with k·k we refer to the Euclidean
norm. Observe that this is the second proposed metric in [1]
and the first one considers only the point positions. We focus
on the one driven by normals as the authors found it to be
favorable. In the discrete setting, where S is given as a (tri-
angulated) mesh with elements tj , the error metric simplifies
to

L2,1(Ri, Pi) =
X

tj

kn(tj)�Nik2 |tj | , (2.1)

with n(tj) the element normal and |tj | its area. In their adap-
tion to point sets, Lee et al. replaced the element normals and
area term in Equation (2.1) by vertex normals and weighted
all points equally with value 1. Here, it is possible to intro-
duce more complex weighting terms in the point set setting
(e.g. [6]), since we do not have an adequate equivalent to the
area of an element. Afterwards, in both the mesh and the point
set setting, the error measure

E({(Ri, Pi) | i = 1, . . . ,m}) =
mX

i=1

L2,1(Ri, Pi). (2.2)

is minimized.
In order to find a minimum of the above error functional, the

VSA procedure relies on a variation of Lloyd’s k-means algo-
rithm [5]. It works on both meshes and point sets, while the
latter just uses the points, its normals, and a proper notion
of neighborhoods. From all respective elements, m are chosen
randomly to build up the proxies, with Ci as a proxy’s barycen-
ter and Ni its normal. The neighbors of selected elements are
collected into a priority queue Q and sorted increasingly with

1



growing L2,1. Afterwards the following three steps are per-
formed iteratively until convergence:

1. Flood: As long as Q is not empty, pop the first element.
Ignore it, if it has already been assigned to a proxy. If not,
assign it to the proxy that pushed it into Q and collect all
neighboring elements into the queue with proxy label they
got pushed by.

2. Proxy Update: Update all proxy normals as averaged sum
of the normals of their associated elements.

3. Seeds: For each proxy respectively, find an element in each
region which is most similar according to the associated
proxy normal and use it as seed element for the next flood-
ing step.

In the work of Lee et al. [4], the authors use the k nearest
neighbors as their neighborhood notion, with k 2 {15, . . . , 20}.

3 Example for a Growing Error Functional

Although the authors of [1] state that they cannot guarantee
global convergence, they do not provide a concrete example. In
this work, we contribute to the understanding of the algorithm
by describing a setup in which the error function (2.1) does
grow during the run of VSA.

Consider the 2-dimensional setup shown in Figure 1(a) with
n points given connected on a line with normal

��1
1

�
next to a

line of n points with normal
�
0
1

�
. At the right end of the second

line, there is a single point with normal
��1

0

�
and another single

point with normal given by

N =
1

n+ 2

 
n ·
 
0
1

!
+

 
�1
0

!
+N

!
.

Now, two proxies will act on this example, with their initial
seeds shown in yellow and blue in Figure 1(a). They each start
on one of the two lines of n points respectively. The result after
a flood is shown in Figure 1(b), where each line is completely
covered by the proxy starting on it and the two single points
are associated to the proxy with normal

�
0
1

�
. After updating

the proxy normals, the yellow proxy has normal
��1

1

�
while the

blue proxy has normal N given by the equation above. Thus,
the yellow proxy starts from an arbitrary point on its line while
the blue proxy starts from the rightmost point. The error after
this first flood and proxy update is given by

E1 = n ·

�����

 
0
1

!
�N

�����

2

+

�����

 
�1
0

!
�N

�����

2

.

Starting from the new seed points, a second flood results in the
situation shown in Figure 1(c). Here, almost all points except
for the rightmost one are associated to the yellow proxy with
normal

��1
1

�
. Its new normal after a proxy update is

N 0 =
1

2n+ 1

 
n ·
 
�1
1

!
+ n ·

 
0
1

!
+

 
�1
0

!!
,

which amounts to an error after the second flood and proxy
update given by

E2 = n ·

�����
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+ n ·
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�N 0
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+
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�N 0

�����

2

.

Choosing e.g. n = 100, we obtain E1 ⇡ 1.9802, but
E2 ⇡ 39.395. Furthermore, the corresponding error value af-
ter the flood is also growing.

n
po
in
ts

n points
1 point

angle 135�

��1
1

�

�
0
1

�

(a) Setup for growing error functional.

(b) Segmentation after first
flood.

(c) Segmentation after second
flood.

Figure 1: Example for a growth in the error measure after a
flood and proxy update.

4 Modification for Converging VSA

In order to obtain an algorithm with guaranteed convergence,
we propose to alter the steps of the algorithm as follows. First,
we perform an initial seeding, one flood step, and a proxy update

as explained above. Instead of the seeding step, we perform the
following procedure:

4. Switch: For all points p 2 P , consider their k nearest
neighborhoods Nk(p). Assume that p is assigned to proxy
Pi. If any point p` 2 Nk(p) is assigned to another proxy
Pj , compute the change of the error measure in Equa-
tion (2.2) resulting from reassigning p from Pi to Pj . Com-
pare it to the current best known reassignment. After it-
erating through all points p 2 P , reassign the point such
that the error measure is reduced maximally.

This new switch step replaces the seed step and the flood step
described above. That is, it is only iterated together with the
proxy update. The iteration is continued until no further switch
operations can be performed. Although we describe the switch

for point sets, it can easily be adopted for the mesh setting. For
this alternate procedure, we can prove the following statement.

Theorem 1 (Error reduction by switch and proxy update,
M. S. and E. Z.). Given a point set P = {p1, . . . , pn0} with a

neighborhood structure, such that the neighborhood graph on P
is connected and normals n1, . . . , nn0 on P , with n0

denoting

the number of points in P , then each proxy update step and

each switch step as defined above leads to proxies (Ri, Pi) with

a smaller error measure in Equation (2.2).

Proof. Concerning the proxy update step, consider

rE({Ri, Pi}) = r
mX

i=1

L2,1(Ri, Pi)

=
mX

i=1

X

pj2Ri

r!j knj �Nik22

=
mX

i=1

X

pj2Ri

2!j(nj �Ni).
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Setting Ni =
P

p`2Ri
!`n`P

p`2Ri
!`

, that is updating the proxy normal

as weighted average of its assigned normals, we obtain

X

pj2Ri

2!j(nj �Ni) =
X

pj2Ri

2!jnj �
X

pj2Ri

2!j

 P
p`2Ri

!`n`P
p`2Ri

!`

!

=
X

pj2Ri

2!jnj �
 P

p`2Ri
2!`n`P

p`2Ri
!`

!
·
X

pj2Ri

!j

=
X

pj2Ri

2!jnj �
X

p`2Ri

2!`n` = 0.

Thus, at the chosen updated proxy normal, the energy reaches
a (local) minimum. As the energy is convex as sum of norms,
which are convex, the found minimum is indeed its global min-
imum for the current choice of segmentation.

Concerning the switch step, only those points are reassigned
which reduce the value of error measure (2.2). Therefore, triv-
ially, after a switch operation the error is smaller.

This theorem proves the convergence of our modified VSA pro-
cedure.

5 New Operations: Split and Merge

Two drawbacks of region growing approaches are the prescribed
number of proxies to be chosen and the proper placement of
seed points. The latter is often done manually in order to en-
hance results. In this section, we want to propose two new op-
erations, which also adds adaptability of the algorithm to input
and desired outcome. Also, they give the user the possibility to
control the level of detail, i.e. how fine the segmentation should
be in the end. For this, we introduce a user-given parameter
 2 R�0 which controls the maximum deviation within a proxy
region Ri from a corresponding completely flat approximation.
This parameter is used in the following two additional steps:

(a) Split : Given a proxy Pi with its region Ri such that
L2,1(Ri, Pi) > . We use weighted principal component
analysis [2] to compute the most spread direction of Ri.
The set Ri is then split at the center of this direction into
two new regions Ri = R1

i tR2
i . The new normals are cho-

sen as N1
i =

P
pj2R1

i

!jnjP
pj2R1

i
!j

and a corresponding N2
i

respectively. The new centers C1
i and C2

i are then placed
at those points of R1

i , R
2
i that have least varying normals

from N1
i and N2

i respectively.
Note that the reasoning of Theorem 1 holds for this case,
too. Thus, the modified VSA procedure outlined above,
enriched with an additional split step does continue to con-
verge.

(b) Merge: Consider a pair Pi, Pj of neighboring proxies with
their respective normals Ni, Nj . If the region R0 = RitRj

with normal N 0 =
Ni+Nj

2 achieves an error measure (2.2)
strictly less than , the two regions are replaced by their
union R0, with normal N 0 and a chosen center C0 2 R0

with its normal least deviating from N 0.
Note that we could allow only those pairs of neighboring
regions to merge such that

L2,1(Ri, Pi) + L2,1(Rj , Pj)  L2,1(R0, P 0).

Then, the error measure would not increase and termina-
tion of the algorithm would be guaranteed. However, this
would result in neighboring regions not observing the user-
given  threshold. Therefore, we accept an increase of the

global error measure in favor of a better region layout. In
all experiments performed, the algorithm still converged.

Both operations alter the number m of proxies. Thereby, a
significant disadvantage of the algorithm is eliminated as the
user does not have to choose m a priori. It is replaced by
the user’s choice of , providing a semantic guarantee on the
regions being built by the algorithm. The user can prescribe a
value of  computed from the desired curvature within a proxy.

In the merge process outlined above, we asked for two neigh-
boring regions. However, we have not defined any relation on
the regions yet. In the meshed case discussed above, two re-
gions are neighbors if and only if they share an edge in the
mesh. In the context of point sets, we cannot rely on this, thus
we propose the following definition. During the flood step de-
scribed above, an element p is popped from the priority queue
Q together with a possible assignment to a region Ri. How-
ever, it is ignored if p has already been assigned to a region Rj .
In this case, we denote Ri and Rj to be neighbors, if i 6= j.
This can be extended to the switch simply by considering two
proxies to be neighbors, if in the k nearest neighborhood of a
point p 2 Pi, there exists a point q 2 Pj , i 6= j.

This finishes the whole VSA pipeline, including the addi-
tional two steps merge and split. In the following, we show
several results of the altered VSA on point sets.

6 Experimental Results

As our proposed extension of the VSA procedure gives some
possibilities to arrange the steps, for the following experiments
we used the pipeline:

Iterate(seeding - flood - proxy update - one split - one merge).

The displayed models with respective number of points
in brackets are the CAD models Joint (9,998), Rocker-
arm (10,000), and Fandisk (6,475) as well as the real-world
models Balljoint (10,002), Max Planck Bust (10,112), and
Bunny (4,899), shown in Figures 2 and 3. The used param-
eters are given in the following table:

Model m m0 k 
Joint 15 34 8 20

Rockerarm 15 45 11 50
Fandisk 15 27 8 20
Balljoint 20 44 10 50

MaxPlanckBust 20 41 8 20
Bunny 15 36 8 20

All these models visually give nice segmentation results, espe-
cially when we consider that all of them started with randomly
selected seeds, where the number of seeds increased by the
merge step in all cases to reflect the local geometries’ behavior.
A further visual comparison can be seen in Figure 3. The first
row shows the segmentation gained with our approach, result-
ing in 27 (Fandisk) and 36 (Bunny) proxies. The second row
shows results obtained by applying the VSA procedure with a
corresponding number of seeds chosen randomly. Finally, there
third row has been started with 15 triangle seeds for both mod-
els, which where selected manually for improved guidance of
the algorithm, while additional seeds where added randomly
to have the final seed numbers 27 (Fandisk) and 36 (Bunny).
Here, we can see that our algorithm produces comparable re-
sults, despite the fact of not having manually placed seeds.
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(a) Balljoint (b) Joint (c) Max Planck Bust (d) Rockerarm

Figure 2: Our VSA adaption applied to four point-based models.

Figure 3: Segmentation applied to the Fandisk (left) and Bunny
(right) models with our approach (first row), the VSA [1] with
automatic (second row), and manual selected seeds (third row).

7 Conclusion

We have explained the VSA procedure, created an example
with a growing error measure (2.1), proposed an alternate
pipeline with the new operation switch, and gave proof of its
convergence. Furthermore, we presented the two new opera-
tions split and merge, which make the procedure independent
of a prescribed number of proxies and a (manual) initial selec-
tion of seeds as shown in our experiments.

For future work, we want to compare the quality of our seg-
mentation approach with state-of-the-art methods and investi-
gate a novel simplification algorithm based on the model ap-
proximating proxies.
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Abstract

Knitted fabrics are widely used in clothing and advanced tex-

tile devices because of their unique and programmable mechan-

ical properties. In order to better understand and control these

properties it is necessary to investigate the influence of yarn

level interactions and stitch structure on the macroscropic be-

havior of the fabric via computational simulation, e.g. Finite

Element Analysis (FEA). In this paper, we present a yarn-level

model that produces geometric models suitable for FEA simu-

lations of knitted fabrics. The geometric models of the yarns

are produced via an optimization process. The centerlines of

the yarns are defined as Catmull-Rom splines and their control

points are modified during the optimization. The optimization

is based on physical parameters such as interpenetration, con-

tact, length of the yarn and bending energy. The results show

that our approach produces valid yarn geometric models of knit-

ted fabrics consisting of an arbitrary combination of knit and

purl stitches, which can then be used for FEA simulations.

1 Introduction

The modelling and simulation of textiles has gained increased
interest in recent years. These simulation e↵orts include the
modelling and analysis of both woven and knitted materials.
Our research focuses on advancing knitted textiles as a sub-
strate for next-generation smart fabrics. A major thrust of
this research is the development of design tools that will au-
tomate the specification of optimized knitted structures. A
critical component of these tools are modelling and simulation
technologies that are capable of accurately predicting the prop-
erties of a knitted material, given the properties of its yarns and
the stitch patterns/commands used to knit the yarns into a fab-
ric. To attain these goals simulations of knitted materials are
done at the yarn-level using Finite Element Analysis (FEA)
[5, 6].

A critical component of these simulations are the geometric
models that define the initial configuration of the fabrics. In
order for the simulations to properly proceed these geometric
models must meet stringent requirements. The most impor-
tant feature of the models is how they define contact between
crossing yarns. Crossing yarns must “touch” at two points,
but must not inter-penetrate each other. These contact points
are defined by yarns that are outside of each other, but are
within an extremely short distance to each other. A secondary
requirement is that the initial geometric models by “plausi-
ble”, i.e. they should not have unnatural, sharp bends or self-
intersections.

A number of geometric models have been developed for knit-
ted fabric simulation [2, 3, 4]. Other simulation models have
been based on the topology of the fabric [1, 7]. None of these

models though meet the strict contact requirements demanded
by FEA in a general, parameterized approach.

In order to produce valid initial geometric conditions for FEA
simulation studies we have implemented an enhanced yarn-level
model of knitted fabrics that incorporates mechanical prop-
erties and spatial constraints with the underlying geometric
representation of the yarns; thus producing initial parameter-
ized geometric models that not only do not interpenetrate, but
touch each other at point contacts, and additionally have a fea-
sible, physically-accurate overall shapes. Our techniques pro-
duce yarn-level geometric models of weft-knitted fabrics con-
sisting of an arbitrary pattern of knit and purl stitches. The
dimensions of these individual stitches may be set by the user.
Together these features allow for the generation of a wide va-
riety of yarn-level geometric models that support the inves-
tigation of the relationship between yarn-level structures and
macroscopic mechanical properties.

Producing physically-accurate geometric models of yarns in
a knitted material is framed as an optimization problem. In
this computing context, a single “cost” function is defined that
captures the various required features of the final geometric
model. The function is specified in such a way that finding the
variable values that minimize the function produces the desired
geometric result [8]. The features incorporated into the model,
and therefore the associated cost function, include maintaining
yarn length, minimizing curvature and creating single contact
points between crossing yarns. The variables that are modified
to minimize the cost function are the spline control points that
define the centerlines of the tubes used to represent the yarns.

Once the optimization problem is formulated for a particular
set of fabric parameters the cost function is minimized using
a quasi-Newton method, which produces a spline that meets
the requirements and constraints of the specified FEA initial
conditions. This model has been utilized as the inputs to nu-
merous FEA simulations of knitted materials. A number of
output examples from the optimization process for a range of
material size parameters are provided, which demonstrate the
e↵ectiveness of our approach to produce geometric models that
are suitable initial conditions for FEA simulations.

2 Optimized Model

Since a fabric consists of repeated stitches our approach focuses
on defining and optimizing the geometry of individual stitches,
rather than the more computationally costly strategy of laying
out the whole fabric and doing a global optimization. Once
optimized, specific stitches, which we call cells, are replicated
to produce the entire fabric. In order to maintain continuity
between replicated cells, precise boundary conditions, both po-
sitional and tangential, must be defined and maintained for
each cell.
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Figure 1: Control points and splines that define a single stitch.

2.1 Unit Cell for Optimization

Fig. 1 shows the control points and resulting splines that define
the yarn geometry for a single stitch. The large single spline
defines the “head” of stitch i, while the two smaller splines
define the “legs” of stitch i+1, the one above it. The control
points in the dotted box are considered a single cell, which can
be reflected to produce the complete stitch. This stitch may
then be copied and translated to produce a fabric model.

The following equations provide the parameterization of the
stitch’s dimensions in terms of course spacing (C), wale spacing
(W) and yarn radius (R). These are used as initial positions of
the control points to define the yarn in the left leg and the left
half of the head of a single stitch.

Pix = aix ⇤W
Piy = aiy ⇤ C
Piz = aiz ⇤R

(2.1)

The coe�cients {ai·} are obtained by defining an approximate
yarn path with reasonable positions. The control points for
the left half of the upper loop (head) of the stitch are assigned
independently from those of the leg.

The yarn splines of knit (K) and purl (P) stitches are defined
in a way that they are dependent on both neighboring stitches
in the vertical direction, and the left stitch in the horizontal di-
rection. Given this, there are only eight possible combinations
of stitches that we need to consider. These eight combinations
are: PPP, PPK, KPK, KPP, where four of them have the same
neighbor as the center stitch while the other four have a dif-
ferent neighbor than the center stitch. Since a knit stitch is
simply a reflection around the X-Y plane of a purl stitch, it is
not necessary to consider separate cells with K as the center
stitch. Thus eight distinct unit cells are able to create a stitch
pattern of any size consisting of knits and purls.

While the curves of the unit cell are presented in Fig. 2, some
of the control points needed to define these curves lie outside
of the unit cell. This is because the tangent vector of the curve
at a control point is defined by its neighboring control points.
These extra, external control points needed to define the curves
of the unit cell are Leg node 0, Leg node 6, Head node 0 and
Head node 6. In order to maintain the correct tangent vector
at the boundary control points (Leg node 1, Leg node 5, Head
node 1, Head node 5) the external control points are linked
with the control points interior to the boundary control points.
For example, as Leg node 2 is moved during the optimization
process, Leg node 0’s position is updated in a way that it is a

Figure 2: Constraints on the control points of unit cells.

reflection (in the X component of Leg node 1) of Leg node 2.
This ensures that the tangent direction at Leg node 1 remains
parallel to the X-Z plane. The same holds true for Head node
4 and Head node 6. Head node 6’s position follows Head node
4’s in order to maintain the correct tangent direction ([1,0,0])
at Head node 5.

Similarly the correct spline shape, i.e. tangent, must be main-
tained across the unit cell boundaries at Head node 1 and Leg
node 5. Note that during the copying and pasting process that
creates a complete stitch these two control points define the
same location. In other words the leg spline that exits the
unit cell at Leg node 5 enters the head spline at Head node 1.
Therefore the tangent vector at these two control points must
be identical. This boundary constraint is enforced by having
the position of Leg node 6 track/follow the position of Head
node 2, and having the position of Head node 0 track the posi-
tion of Leg node 4. All of the linking relationships are visually
presented on Fig. 2, where unique symbols are placed around
the linked control points. For example Leg node 0 and Leg
node 2 are linked and both are marked with red pentagons.
In all of these pairings, the interior control points are moved
by the optimization process and the external control points’
positions are then be updated.

2.2 Yarn Model Cost Function

A cost function F (·) is defined, based on the shape of the
yarn splines. The minimum of this function represents a valid,
physically-realistic geometric initial condition for an FEA sim-
ulation. F () consists of three terms:

F (Ci(P j)) = ↵FDistance + �FBending + �FLength (2.2)

F () is a function of the curves Ci that define the centerlines of
the spline tubes used to represent the yarns. The centerlines
are specified with Catmull-Rom splines, which consist of C1
piecewise cubic Bezier curves. The curves are defined by a set
of control points P j , which are interpolated by the curves Ci.
FDistance is defined in such a way that it is at a minimum
when the distance between the spline tubes is zero, i.e. the
yarn geometries are not intersecting, and are touching at two
points. FBending defines the bending energy (as a function
of curvature) of the yarn and ensures that the yarn geometry
maintains a natural-looking shape. FLength is the term that
ensures that the yarn spline tube does not significantly change
its length during optimization. ↵, � and � are weights that
control the strength of each term and give us the ability to
adjust the importance/contribution of each component to the
final result.
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2.3 Optimizing the Unit Cells

Given a unit cell that consists of a leg spline and a head spline,
an optimization may be employed to adjust the positions of the
splines’ control points in order to produce yarn geometric mod-
els with the desired properties. For design optimization pur-
poses, we explore the parameter space of materials, e.g. course
and wale spacing, as well as yarn thickness, in search of ma-
terials with optimal performance properties. Therefore it is
important during FEA simulations of knitted materials that
the simulated fabrics maintain certain size parameters. For
this reason, not all of the spline control points are allowed to
move freely.

Instead certain components of the yarn splines are con-
strained in order to ensure that the user-specified course and
wale spacing is preserved after the optimization process has
completed. The positions of the control points on the bound-
ary of the unit cell (Leg node 1, Leg node 5, Head node 1, Head
node 5 in Fig. 2) are therefore partially locked. The red nodes
may only move in the Z direction during optimization, i.e. they
are locked in the X and Y direction. The black nodes may move
in the X and Z direction, i.e. they are locked in the Y direction.
The positions of all the interior blue nodes are unconstrained
during optimization. Again, constraining the boundary control
points during optimization ensures that the values of C and W
are maintained.

An unconstrained quasi-Newton method is utilized to min-
imize Equation 2.2 for the eight defined unit cells. This un-
constrained optimization is performed while still enforcing the
required constraints by simply omitting the fixed components
of the constrained control points from the optimization pro-
cess. Therefore 22 variables are involved in the optimization,
i.e. the values of these variables are modified in order to mini-
mize the cost function. These 22 variables are the X, Y and Z
components of Leg node 2, Leg node 3, Leg node 4, Head node
2, Head node 3, and Head node 4 (the interior blue nodes in
Fig. 2), just the Y component of Leg node 1 and Head node
5 (the red nodes), and the X and Z components of Leg node
5. Note that Head node 1 is not included in the optimization,
since it is linked with Leg node 5 and tracks its position. Simi-
larly the exterior control points (Leg node 0, Leg node 6, Head
node 0 and Head node 6) are not directly modified by the opti-
mization process, but instead have their positions determined
by their linked, interior counterparts.

2.4 Replicating the Unit Cells

From a given stitch pattern the model is created by translating,
reflecting and connecting the appropriate unit cells. The unit
cells are designed to be the left halves of purl stitches. To
produce the right half, a unit cell is simply mirrored across the
X-Z plane. Similarly, to generate a knit stitch, a unit cell is
mirrored across the X-Y plan.

The types (Knit or Purl) of the neighboring stitches deter-
mine the type of cell that will be placed, via replication and
translation, at each stitch location in the fabric. Each cell has
constraints imposed on it during optimization to ensure that
C1 continuity is maintained across the boundaries to neigh-
boring cells. This allows for seamless connections at the cell
interfaces. Therefore any stitch pattern consisting of knit and
purl stitches can be constructed by using these eight cells, and
the resulting model may be used for an FEA simulation.

2.5 Writing an IGES file

Once the optimized control points for the entire fabric are gen-
erated, they are written to a file such that the geometry can be

Figure 3: Rib pattern of 4x4 stitches.

Figure 4: Random stitch pattern containing all the unit cells.

directly read by an FEA simulation software, such as ABAQUS.
For this file we use the Initial Graphics Exchange Specification
(IGES) format, as it can be read by a wide range of simulation
softwares.

The control points of the individual cells are concatenated
along each row to produce a single Catmull-Rom (CR) spline
that defines the yarn along the row. The cross section of the
yarn is assumed to be circular. A circle of the given yarn radius
is swept through these CR splines to create a cylindrical tube.
The ends of the yarns are capped by circular disks in order
to create closed, solid objects. The IGES format requires the
curves to be represented as Non-Uniform Rational B-Splines
(NURBS). Hence the individual cubic Bezier curves of the CR
splines are converted to NURBS of degree 3 while maintaining
the same set of control points.

3 Results

It takes approximately 3 minutes for all unit cells to be gen-
erated and run through the MATLAB fminunc function on an
Apple iMac with a 4.2 GHz Intel Core i7 processor and 32 GB
of RAM.

For generating the examples, we have chosen the model’s
initial parameter values as W = 21.2, C = 12.8, R = 0.75. Us-
ing these values, di↵erent stitch patterns are generated. Fig. 8
shows a plain knit stitch pattern and Fig. 3 presents a rib pat-
tern. It can be seen that only one unit cell is included in these
patterns. Hence, a random stitch pattern of size 4⇥ 4 contain-
ing all eight unit cells was generated as shown in Fig. 4. It
is defined as “pppk;ppkp;pkpp;kpkp”, where ’;’ separates the
rows. We use this pattern to compare models with di↵erent
parameter values.

The model in Fig. 5 has an increased yarn radius. Fig. 6
increases course spacing by 25%, while in Fig. 7 the wale spac-
ing is reduced by 25%. Fig. 8 presents the output of an FEA

IGS 2019 Poster 3



Figure 5: Random stitch pattern with yarn radius increased by
25%.

Figure 6: Random stitch pattern with course spacing increased
by 25%.

simulation using our yarn-level geometric model.

4 Conclusion

We have presented a yarn-level geometric model of knitted fab-
rics that can be used for FEA simulations. The model is opti-
mized to prevent inter-penetrations while minimizing the cur-
vature and maintaining the length of the yarns. The control
points of the model are used to create cylindrical surfaces rep-
resenting the surface of the yarns. The model is written into
an IGES file, which can then read by an FEA software such as
ABAQUS for further processing.

This research was partially supported by National Science
Foundation grant # CMMI-1537720.
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Abstract

We propose a novel theoretical framework for barycentric in-
terpolation, using concepts recently developed in mathematical
physics. Generalized barycentric coordinates are defined simi-
larly to Shepard’s method, using positive geometries – subsets
which possess a rational function naturally associated to their
boundaries. Positive geometries generalize certain properties of
simplices and convex polytopes to a large variety of geometric
objects. Our framework unifies several previous constructions,
including the definition of Wachspress coordinates over poly-
topes in terms of adjoints and dual polytopes. We also discuss
potential applications to interpolation in 3D line space, mean-
value coordinates and splines.

1 Overview

The interpolation of scalar- or vector-valued data is an impor-
tant task in many fields, including numerical analysis, geomet-
ric modeling and computer graphics. Barycentric coordinates
can be defined over segments, triangles and simplices as well
as more complex shapes, such as polytopes [4]. These include
Wachspress coordinates [17] which are rational functions de-
fined for convex polytopes. Wachspress coordinates were also
generalized to subsets bounded by non-linear hypersurfaces [2]
and can be defined in several equivalent ways [18, 11, 9]. We
describe a theoretical framework that clarifies the relationship
between these di↵erent formulations, and provides opportuni-
ties for novel generalizations.

We propose a set of basic building blocks for barycentric in-
terpolation methods: positive geometries. Positive geometries
have been recently introduced in the theoretical physics liter-
ature [1], but their application to interpolation problems has
not been explored before. Besides simplices and polytopes, the
category of positive geometries includes objects with similar
combinatorial properties, such as polycons [17] or “positive”
parts of toric varieties [15] and Grassmannians [12, 6]. A posi-
tive geometry carries a “canonical” di↵erential form: a rational
function with the properties of a signed volume, that has its
poles (where the denominator vanishes) along the boundaries
of the “positive” region. Crucially, these poles have a recursive
structure, i.e. restricting a canonical form to a boundary com-
ponent (via a generalization of taking complex residues) results
in another canonical form. Thus, positive geometries share
many properties with polytopes – most importantly, that com-
plicated objects can be constructed by adding together simpler
ones. To define interpolation in terms of canonical forms, we
use a variant of Shepard’s method [4, 13]: barycentric coordi-
nates are ratios tending to 1

1 along the interpolated bound-
aries. For polytopes, our construction recovers the definition
of Wachspress coordinates in terms of dual volumes [9].

In this preliminary work, our goal is to introduce the theory
of positive geometries to our audience, and demonstrate how

they generalize earlier constructions for barycentric interpola-
tion. After some motivating observations (Section 2), we give a
definition of positive geometries and their canonical forms, also
giving some examples (Section 3). We then describe how to use
the canonical forms of positive geometries for barycentric inter-
polation (Section 4). Finally, we discuss potential applications
of this framework to interpolation in line space, and possible
extensions to non-rational barycentric coordinates and splines
(Section 5).

2 Motivation

Let us consider the basic example of linear interpolation over
a segment [a, b] ⇢ R. The standard formula

f(x) =
b� x
b� a

f(a) +
x� a
b� a

f(b), (2.1)

can be written in an alternative barycentric form [8]:

f(x) =
1

x�af(a)�
1

x�bf(b)

� b�a
(x�a)(x�b)

, (2.2)

as a rational function with both the numerator and the denom-
inator having poles at the boundaries a and b.

Consider next linear interpolation over triangles
(p0,p1,p2) ⇢ R2 in the plane. The usual formula for
barycentric interpolation gives

f(x) =
A0f(p0) +A1f(p1) +A2f(p2)

A
, (2.3)

which can be reorganized into the equivalent form

f(x) =
1

A1A2
f(p0) + 1

A2A0
f(p1) + 1

A0A1
f(p2)

A
A0A1A2

, (2.4)

with the notations shown in Figure 1.

A1

A2

A0
x

p0

p1

p2

pi−1

pi

pi+1

x

Ai−1,i

Ai,i+1

Ci

Figure 1: Notations for barycentric coordinates.

Wachspress proposed generalized barycentric coordinates
over convex polytopes [17]. For a planar n-gon with vertices
p0, . . .pn�1 these coordinates are defined as:

f(x) =
nX

i=0

Ci
Ai�1,iAi,i+1P

k CkAk�3,k�2···Ak+1,k+2Q
k Ak,k+1

f(pi), (2.5)

1



Figure 2: Canonical rational function of a triangle.

Figure 3: Canonical rational function of a pentagon.

where the indices are cyclical modulo n – see Figure 1.
In each of these cases, some terms in the numerator and

denominator approach infinity along an interpolated subset,
which is reminiscent of Shepard’s method [8, 13]. The rational
functions in the denominators are illustrated in Figure 2 and
Figure 3. The common pattern involves functions with poles
along the boundaries of some shape. Our goal is to make this
idea rigorous using the notion of a positive geometry.

3 Positive Geometries and Canonical Di↵er-

ential Forms

The central concept of our work is that of a positive geome-
try – a relatively new concept originating from mathematical
physics. In this chapter, we give an informal overview, and
refer to [1] for technical details. For the necessary background
in projective and algebraic geometry, see e.g. [12, 7].

3.1 Definition of Positive Geometries

Positive geometries were introduced as generalizations of
shapes with a recursive structure similar to polytopes, defined
by some sort of “positivity” criterion (e.g. the interior of poly-
topes, or totally positive matrices [5]). The definition was mo-
tivated by recent developments in quantum physics, where the
solution of di↵erential equations in Fourier space led to rational
functions with poles at the boundaries of certain regions [1].

Definition 1. A positive geometry is a pair (X,X�0), where
X is a d-dimensional complex projective algebraic variety, and
X�0 is an oriented semi-algebraic subset of its real part, with
a unique di↵erential d-form ⌦(X,X�0) called its canonical
form, defined by recursion on the boundary dimension:

• If d = 0, then X is an (oriented) point, and ⌦(X,X�0) =
±1 depending on the orientation.

• If d > 0, then the boundary components of X�0 are them-
selves positive geometries, and the multivariate residue
(see [1, A.3] or [7, Ch. 5]) along a component is the canon-
ical form for the associated positive geometry.

We stress that a positive geometry is determined by an am-
bient complex manifold (most often a projective space Pn),
together with a “positive” real subset, thus many di↵erent pos-
itive geometries could be associated to the same ambient space.

For positive geometries over projective spaces with homoge-
neous coordinates x = [x0 : x1 : . . . xd], the canonical form can
always be written in terms of a rational function [1, C.1]:

⌦(X,X�0) = C(x)!(x), (3.6)

where C is called the canonical rational function of the
positive geometry and

!(x) =
1
d!
x0dx1 ^ . . . ^ dxd + . . .+ (�1)dxddx0 ^ . . . ^ dxd�1

is the standard measure on projective d-space.

3.2 Examples of Positive Geometries

Some elementary examples of positive geometries are the fol-
lowing:

• Segments, bounded by two points a = [a : 1] and b =
[b : 1] in the projective line P1 parameterized using ho-
mogeneous coordinates. The canonical form at the point
x = [x : y] is

⌦(P1, [a, b]) =
hb,ai

hx,ai hx,bi!(x), (3.7)

where hv,wi := det(v,w) denotes the determinant of vec-
tors of homogeneous coordinates.

• Simplices in projective spaces. For triangles formed by
three points pi = [xi : yi : 1] , i = 0, 1, 2 in the projective
plane � ⇢ P2 parameterized using homogeneous coordi-
nates x = [x : y : z], the canonical form is

⌦(P2,�) =
1
2

hp0,p1,p2i2

hx,p0,p1i hx,p1,p2i hx,p2,p0i
!(x).

(3.8)

Both of these forms are invariant under independent scaling
of the homogeneous coordinates of the vertices, as well as the
point of evaluation, and are thus well-defined functions over
projective spaces.

Many other examples of positive geometries were identified
[1, Ch. 5]:

• Planar regions bounded by a conic section and a line.

• Regions in projective 3-space bounded by a quadric or cu-
bic surface and a plane.

• Positive, real parts of Grassmannians (manifolds of k-
planes in n-dimensional space, denoted G(k, n)).

• Positive, real parts of toric varieties [15].

These examples – called generalized simplices – all have
canonical forms with constant numerators.

The canonical forms of positive geometries are additive, i.e.
the canonical form of a union is the sum of the canonical forms
of its parts. The poles along boundaries meeting with oppo-
site orientation will cancel, so that only poles on the exterior
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boundary remain (technically, this is true for a “signed trian-
gulation of the empty set” – see [1, Ch. 3]). This implies
that the canonical forms of more complicated regions can be
determined by “triangulating” them. It follows that convex
polytopes – which can be triangulated in the usual sense – are
also positive geometries.

In analogy with generalized simplices, there are also various
generalized polytopes:

• Convex regions of the projective plane bounded by straight
lines and conics, which are examples of polycons, as defined
by Wachspress [17].

• Grassmann polytopes, in particular Amplituhedra, which
are generalizations of cyclic polytopes into Grassmannians.

Generalized polytopes have canonical forms with a non-
constant numerator. In fact, for polytopes and polycons the
numerator is known as the adjoint polynomial [10, 2].

3.3 Relation to dual polytopes

A canonical form often has a natural geometric interpretation.
In particular, the canonical rational function of a convex pro-
jective polytope P ⇢ Pd is the signed volume of its polar dual
P ⇤
x ⇢ (Pd)⇤, as shown in [1, Ch. 7.4.1]. The polar dual is the

intersection of the dual projective cone of the polytope, with
the dual hyperplane of the point x 2 P , and its volume is a
rational function over P computed by the integral formula

Vol(P ⇤
x ) =

1
d!

Z

y2Px⇤

1
(xTy)d+1

!(y). (3.9)

4 Barycentric Interpolation over Positive

Geometries

We claim that the canonical forms of positive geometries can
be used to define barycentric interpolation in a way similar to
Shepard’s method.

Consider barycentric (linear) interpolation over a segment.
Define the weight function for the endpoint a as the ratio of
canonical forms for positive geometries over the projective line

�a(x) =
⌦(P1, [a, x⇤])
⌦(P1, [a, b])

, (4.10)

where x⇤ is the projective dual of the point x. If we choose
coordinates so that x is the origin and x⇤ is the point at infinity,
we get the barycentric formula (2.2) for linear interpolation.

The same construction applies to a triangle as well. For the
the vertex pi, we take the ratio of two canonical forms over the
projective plane – that of the original triangle, and the triangle
bounded by the two sides meeting at pi together with the dual
line of the current point x. Using the notations of Figure 4:

��
i (x) =

⌦(P2,�(lki, lij ,x
⇤))

⌦(P2,�(lij , ljk, lki))
. (4.11)

This is simply the usual formula (2.4) for barycentric interpo-
lation. Along each of the sides, the forms (technically, their
residues) restrict to linear interpolation over a segment, as ex-
pected.

For a convex polytope P ⇢ P2 we follow the same recipe –
the denominator for the vertex pi will be the canonical form
of P , while the numerator is the canonical form defined by the
sides meeting at the vertex, with the dual line of the current
point:

�P
i (x) =

⌦(P2,�(l(i�1)i, li(i+1),x
⇤))

⌦(P2, P )
. (4.12)

x
pj

pk

pi

x
∗

lij

lki

ljk

Figure 4: Triangles used for barycentric coordinates.

These weight functions are the Wachpress coordinates (2.5)
over P . The generalization to higher-dimensional simplices and
(simplicial) polytopes is straightforward.

In each case, the numerators are defined by positive geome-
tries that form a signed triangulation of the domain. The addi-
tivity of canonical forms under unions then implies that their
sum is the canonical form of the original polytope, and thus
these functions form a partition of unity.

While these triangulations are not the most natural with re-
spect to the original polytope, they correspond to a natural tri-
angulation of the polar dual polytope including the origin (i.e.
the current point x). Recalling the interpretation of canonical
forms as dual volumes, the numerator is seen as the volume of
the dual pyramid formed by the current point and the dual face
of the vertex. Thus, we connect to the earlier work of [9], who
characterized Wachspress coordinates as ratios of polar dual
volumes. Note that a triangulation of the polar dual through
its vertices is analogous to Warren’s triangulation-based defi-
nition of the adjoint polynomial for a polytope [18].

Wachspress coordinates can be generalized also to regions
bounded by subsets bounded by higher-order algebraic vari-
eties, such as polycons [17]. We omit the discussion of these
cases to conform to spatial limitations.

5 Discussion and Future Work

Our approach to barycentric interpolation with canonical forms
of positive geometries unifies earlier approaches using adjoint
polynomials, dual volumes and Shepard-like interpolation. An
advantage of this framework is that it extends to positive ge-
ometries other than polytopes, such as Grassmannians and
toric varieties.

We also mention that the definition of a positive geometry
embeds the domain into a higher-dimensional complex mani-
fold, thus our approach can be viewed as a multivariate gen-
eralization of complex analytical methods (contour integrals,
residues) used in univariate approximation theory [16].

5.1 Open Problem: Interpolation in Grassman-

nians

As was mentioned previously, certain “positive” subsets of
Grassmannians are also examples of positive geometries. Points
in a GrassmannianG(k, n) can be represented by k⇥nmatrices,
and the positive geometry known as the positive Grassmannian
corresponds to totally positive matrices, which are of great in-
terest for approximation theory and geometric modeling [5].

The Grassmannian of 2-planes in 4-space, G(2, 4) – which is
also the manifold of lines within 3-space – is particularly in-
teresting for many applications [12]. G(2, 4) is a 4-dimensional
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hypersurface in P5 cut out by a quadratic equation in Plücker
coordinates, and the positive Grassmannian is a semi-algebraic
subset with non-linear boundaries. The line-geometric ana-
logue of a simplex might be related to the tetrahedral line com-
plex, the boundary of which is the set of lines defined by the
edges of a tetrahedron. The combinatorial structure of this
boundary is that of an octahedron – an example of a hyper-
simplex – as shown in Figure 5, where each vertex represents a
line along an edge of the tetrahedron, while each face represents
lines through either a vertex or a face [6].

p0 p1

p2

p3

l01
l13

l03

l23
l02

l12

Figure 5: Tetrahedral line complex and corresponding hyper-
simplex. Shaded faces correspond to lines through vertices.

Being a positive geometry, the positive Grassmannian has a
canonical form, i.e. a rational function of Plücker coordinates
with poles along its boundaries [1, Ch. 5.5]. This suggests that
generalizations of barycentric coordinates into line space might
be possible using our framework.

5.2 Open Problem: Generalized Positive Geome-

tries for Mean-Value Coordinates

Canonical forms are defined by rational functions, so Mean-
Value Coordinates (MVCs) [4] – defined by transcendental
functions – are apparently incompatible with the proposed
framework. We could adapt the approach of [14], where MVCs
are expressed as dual Shepard interpolants, after deforming the
original boundary to a unit circle around the current point. A
disc is not a positive geometry in the usual sense – it lacks zero-
dimensional boundary components, for example. Nevertheless,
we can easily find a projectively well-defined function with sin-
gularities along a projective conic C given by the quadratic
equation xTQx = 0 (see [1, Ch. 10] for a lengthy discussion):

⌦(P2, C) = ⇡ det(Q)
3
4

(xTQx)
3
2

!(x). (5.13)

Observe the similarity with the transfinite form of MVCs [4,
Ch. 10], when C is a circle. This kind of canonical function is
not rational and its singularities along C are not simple poles,
but branch points (similar to the origin of the complex plane for
fractional powers and logarithms). The authors of [1] also iden-
tified such transcendental generalizations of positive geometries
as promising subjects for future research.

5.3 Open Problem: Relation to Splines and Inte-

gral Geometry

Formulas such as the dual volume (3.9) also appear in the con-
text of multivariate (box/simplex/cone) splines [3], as Laplace
transforms of indicator functions. This suggests that splines
and barycentric interpolants could both fit within an even more
general theoretical framework related to integral geometry.
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Abstract

We discuss the properties and computation of the exact bound-
ary B of the convex hull, H(C), of a set C of n oriented circles
{Ci}, which may have di↵erent radii, but all lie on the same
sphere, S, and bound disjoint caps. The faces of H comprise:
the n caps, t = 2n � 4 triangles, each having vertices on dif-
ferent cap borders, and 3t/2 developable surfaces, which we
call corridors. The connectivity of H and the vertices of its
triangles may be obtained by computing the Apollonius dia-
gram of a flattening of the caps via a stereographic projection.
The corridors are each a subset of an elliptic cone and their
four vertices are coplanar. The above ideas may be used to
compute and process the Convex Hull of Cospherical Cir-

cles (CHoCC ), in which each cap of H is replaced by the
corresponding disk. A lattice may be approximated by an
ACHoCC, which is an Assembly of touching, but not in-
terfering, CHoCCs that share contact disks. The simplicity
of the boundary representation of each CHoCC and of their
disk-interfaces makes the ACHoCC attractive for lattice pro-
cessing and 3D printing. We also discuss polyhedral coarse
approximations of CHoCCs and ACHoCCs.

1 Introduction

In this paper, we propose a representation of the exact convex
hull, H(C), of a set C of n oriented circles, {Ci} , of possibly
di↵erent radii, that all lie on the same sphere, S (Fig. 1-left).
Throughout this paper, we assume that the spherical caps de-
fined by a chosen orientation of each one of these circles are
pairwise disjoint.

Figure 1: Circles around disjoint caps on a sphere (left) and
their convex hull (middle), comprising disks (red), triangles
(blue), and corridors (green), each bounded by two straight
and two circular edges. We draw (black) a sampling of genera-
tors on each corridor. We show (right) an example with more
circles.

In Sec. 2, we show that the face-graph of the convex hull
of n > 2 cospherical circles has 6n � 10 faces. Each face is
either a disk, a triangle, or a developable surface, which we call
a corridor (Fig. 1-middle). We also explain how it may be
computed e�ciently by constructing the Apollonius diagram
[7].

In Sec. 3, we point out that each corridor is a subset of an
elliptical cone. This result was known in Classical Geometry

[10]. We also explain how to compute its axis and apex.
In Sec. 4, we discuss an application for approximating a lat-

tice by an assembly of solid elements (one per junction and
one per beam), each being the Convex Hull of Cospherical
Circles (CHoCC ). The interiors of the elements are disjoint.
Each junction element touches incident beam-elements at disk-
interfaces.

Finally, in Sec. 5, we discuss the generation of tessellations of
these circles and their use for generating coarse polygonal-mesh
approximations of any selected portion of a lattice.

2 Face-graph topology and vertices

In our representation of the boundary B of H(C) and in our
algorithm, we exploit the following homeomorphism between
the adjacency graph of these faces and the connectivity graph
of a triangle mesh, M: disks (resp. corridors, triangles) of B
map to the vertices (resp. edges, triangles) ofM. The mapping
becomes obvious if we shrink each disk to its center. Hence, the
boundary B of the convex hull of n cospherical circles has the
following face types and counts: (1) the n disks, each being the
convex hull of an input circle Ci, (2) the t = 2n� 4 triangles,
each connecting three of the disks, (3) the 3t/2 developable
patches, which we call corridors, each adjacent to two disks
and two triangles (Fig. 1-right). Consequently, the total face-
count is n+ (2n� 4) + 3(2n� 4)/2, which is 6n� 10.

For each triplet {Ci,Cj ,Ck} of circles in C, there exists 2
supporting planes. Each such supporting plane, ⇧, touches
each of these three circles at a vertex of a candidate triangle,
Ti,j,k. We orient Ti,j,k and ⇧ such that the circles {Ci,Cj ,Ck}
lie inside the associated halfspace, ⇧+. A candidate triangle is
valid, i.e., a triangle of B, if and only if, all the other circles of
C are also in ⇧+.

The intersection of S with ⇧ is the circumcircle of Ti,j,k.
Hence, computing Ti,j,k is equivalent to finding the circle on
S that is tangent to Ci, Cj , and Ck (there exists eight such
circles, see Fig. 2-left) and that lies on a supporting plane, ⇧
(there exists two such circles, see Fig. 2-right). This is a version
of the Apollonius’ problem, but on a sphere.

Figure 2: Eight circles (dark green) tangent to three given
circles (black) on a sphere (left), and the two possibly valid
solutions that each lies on a supporting plane of the three given
circles (right).

Starting with the n spherical caps defined by the oriented
input circles {Ci}, the vertices of H(C), may be computed by
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the following sequence of steps:
1) Transform the spherical caps into a set of disks in the

plane through a stereographic projection [3], P, which preserves
angles and circles.

2) Compute the Apollonius diagram of the planar arrange-
ment of disks. This computation may be performed in CGAL
[7]. The Apollonius diagram is also called the additively
weighted Voronoi diagram. Its computation is discussed in [8].
The diagram defines maximal circles (see blue circles on the
plane in Fig. 3) that are each tangent to three di↵erent disks
at three contact-points. Each triplet of such points that is asso-
ciated with a maximal circle corresponds to the three vertices
of a valid triangle, Ti,j,k, of H(C).

3) For each triplet, record the associated disk-indices,
{i, j, k}, transform the contact-points back onto S using the
inverse of P and produce the corresponding triangle (blue).

Figure 3: Left: 3D view of 5 cospherical circles (red) with 2D
Apollonius diagram drawn on a plane parallel to the top red
disk. Right: 2D view of the diagram (green), showing maximal-
circles (blue), each tangent to three red circles.

From this information, we can easily reconstruct the blue
triangles that each touch three red disks, and hence the border
edges of each green corridor.

3 The surface of each corridor

The convex hull in three dimensions of two circles in general
configuration has faces that are ruled surfaces of degree eight
[9].

Remarkably, when the two circles lie on a sphere, their con-
vex hull is bounded by faces that are either planar (the two
disks in situations where the caps are disjoint) or subsets of el-
liptical cones. Indeed, each circle is the intersection of a plane
with the sphere, S. Spain [10] proved that in the special case of
intersection between two quadric surfaces, wherein one of the
quadrics degenerate into a pair of planes, there exists two cones
that pass through their intersection. Hence, there exists two
elliptic cones that pass through two cospherical circles (Fig. 4).

Figure 4: There exists two elliptic cones passing through two
disjoint circles on a sphere S. One with its apex outside of S
(left)—the other inside (right).

Our corridors are each a subset of an elliptical cone through
two input circles, and the two straight edges bounding a corri-

dor are generators of that cone. As shown in Fig. 5, a corridor,
R, is adjacent to two red disks, Di and Dj and two blue trian-
gles Ti,j,k and Tj,i,l. It is defined by the ordered quadruplet of
circles {Ci,Cj ,Ck,Cl}.

Figure 5: A corridor is defined by a quadruplet of circles.

The corridor is the union of a pencil of generators (line
segments). To render a corridor as a quad mesh or to compute
its silhouette, we use a parameterization of these generators.
Given a point A (one end of a generator) on Ci (Fig. 5) and
the apex F of the cone through Ci and Cj , we compute the
corresponding point A0 (the other end of that generator) on Cj

as the intersection of plane containing Cj with the line through
F and A.

Figure 6: The apex F of the elliptic cone (green) is the inter-
section of line L(A1, B2) with line L(B1, A2). The red dotted
line is the axis of the elliptic cone, it bisects \AFB1.

To compute the apex F of an elliptical cone that contains
two circles, C1 and C2, with centers C1 and C2 on sphere S
with center Cs, we consider the plane ⇡ passing through C1,
C2 and Cs. We consider the intersections A1 and B1 of C1 with
⇡ and also the intersections A2 and B2 of C2 with ⇡, as shown
in (Fig. 6). F is the intersection of the line through A1 and B2

with the line through A2 and B1.

4 Approximating a lattice by an ACHoCC

One motivation for this work is to simplify and accelerate the
processing of extremely complex lattices represented by param-
eterized programs [5]. Such a lattice may contain billions of
beams and it may not be possible to fully evaluate its bound-
ary nor even the parameters of all its elements. Hence, we
rely on lazy (on demand) evaluation of a selected subset of the
model to support various queries for analysis or printing.

Gupta et al. [5] define a lattice in terms of a union of balls
and cone beams, which may be decomposed into an assembly of
hubs. A beam F is a solid conical frustum defined to smoothly
connect two balls, B1 and B2, such that the union F[B1 [B2

is the convex hull of B1 and B2. A half-beam is a portion of a
beam, cut by the plane that is equidistant from B1 and B2 and
is perpendicular to the axis through the centers of B1 and B2.
A hub is the union of a ball and of every half-beam incident
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on it. A lattice is composed of hubs (Fig. 7), which we assume
do not intersect one another, except at the disks capping each
half-beam.

Figure 7: A portion of a lattice with individual hubs shown in
separate colors.

Even though the geometry and topology of each hub is rel-
atively simple [4], we discuss here an approach that simplifies
that geometry and accelerates its evaluation.

The key idea is to associate a sphere S, with each hub. S has
the same center as the ball of the hub. But its radius is slightly
larger than the smallest radius for which the half-beams of the
hub do not interfere outside of S.

Replacing each hub by its union with the solid bounded by
S produces an inflated-hub approximation of the hub. It has
a larger volume, but a simpler boundary: only circular edges.

We split the inflated-hubs at contact-planes that contain
their circular edges and glue the remaining parts of the half-
edges back together. We obtain a new decomposition of the
lattice into an assembly of chopped-balls (intersection of the
ball bounded by S with halfspaces bounded by the contact
planes) and chopped-beams (conical frustums). Notice that
these chopped-balls and the new beams are all convex and have
only circular edges. (We are assuming that their interiors are
all disjoint). A chopped-ball touches incident chopped-beams
along contact-disks.

To reduce the added volume, we replace each chopped-ball by
the convex hull of its contact-disks. Observe that each element
of this new model is a CHoCC (Fig. 8-left), and the whole
lattice is an assembly of CHoCCs.

5 Tessellation

For some applications, we tessellate the boundaries of hubs into
coarse approximations without evaluating non-selected por-
tions of the lattice.

The natural, minimal tessellation of a corridor is into a single
quad that interpolates the four coplanar vertices of the corridor
(Fig. 8). Each disk is replaced by a polygon that interpolates
the vertices on its boundary. So, that tessellated version of
a CHoCC comprises its original triangles, a quad per corridor
and a polygon per disk.

The case of a convex hull of only two circles must be han-
dled specially, because it contains only one corridor, which is
tessellated with a minimum of three planar quads.

The minimal tessellation of a hub may produce non-manifold
solids or may result in unacceptable approximation errors (ei-
ther with respect to the ACHoCC or to the corresponding parts
of the original lattice) for the target application, so we discuss
below post-processing tools for improving accuracy.

The first step in improving the quality of the tessellation is
to refine it. We insert a vertex at the midpoint of each edge of
the mesh of the CHoCC of each chopped-ball. For each triangle
of that mesh, we refine it into four new triangles, where one of
the new triangles is incident on the three inserted vertices. For

Figure 8: The surface of the convex hull of circles on a sphere
unioned with the surfaces of the conical beams (left). Their
coarsest (natural) approximation in which each corridor is rep-
resented by a single planar quad (right).

each quad, we insert one new vertex at its centroid and refine
it into eight new triangles (Fig. 9-left).

The refine step does not change the shape of the mesh, and
so does not improve its approximation accuracy. To improve
accuracy, a vertex that was inserted on an edge of a polygo-
nal approximation of a disk is snapped radially onto the circle
bounding that disk (Fig. 9-right). Note that after this process,
the mesh may no longer be convex.

Figure 9: (Left) A subdivision of the mesh of Fig. 8-right.
(Right) The result of snapping the polygonal vertices onto their
circle.

The tessellation described above di↵ers from the original lat-
tice in two significant ways: 1) its volume may be increased
when the CHoCC of a hub is much larger than the ball, 2) some
of the hub ball may lie outside of the corresponding CHoCC.

We amend both of these problems with a central projection
step, which projects each vertex onto the surface of the exact
hub. If the vertex is outside of the exact hub boundary, then
we move it to the first intersection of the ray from it to the
hub’s center. Otherwise, we move it to the first intersection
of the ray from the hub’s center to the vertex (Fig. 10-left).
The central projection requires that the hub’s center be con-
tained by the CHoCC. We are experimenting with alternative
projections without this requirement.

A fillet may be desired, in place of sharp edges at the junc-
tions between beams, to reduce stress concentrations. The fil-
leted hub is represented as an implicit surface, based on Blinn’s
blobby molecules [2]. The equation for a filleted hub is

d(P ) = �
ln

Pn
i=1 exp (�bdi(P ))

b
(5.1)

where d(P ) = 0 when point P is on the surface of the fil-
leted hub, di(P ) is the signed distance from P to the ith beam
(unioned with the two balls it connects), and b > 0 is the blob-
biness parameter where smaller values yield a larger fillet. We
implement di(P ) as the cone-sphere distance computation from
Barbier et al. [1], and we use sphere tracing to solve the ray
intersection against the filleted hub [6] (Fig. 10-right).
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Figure 10: The inserted vertices are projected onto the surface
of the hub by moving the vertices towards the center of the
hub’s sphere (left). A filleted version of the junction (right)
obtained by projecting the vertices on onto a blending surface.

We can construct, on demand, any of the variants discussed
above for a selected portion of the lattice. For example, fig-
ure 11 shows the crudest tessellation of the lattice without re-
finement.

Xiong et al. [13] proposed to compute structured quad mesh-
ing (following natural parameterization of underlying surface)
of a network of tubular surfaces. Although their proposed for-
mulation produces good quality quad meshes, it is globally
constrained over all branches of the tubular network and may
not be viable for meshing lattices with large number of beams.
Stasuik and Piker [12] proposed a Grasshopper plugin called
”Exoskeleton” to construct the triangle mesh of the surface
of a solid obtained by thickening of a wireframe model [11].
Srinivasan et. al. [11] use convex hull of polygonal faces of
beams connected to a joint to approximate joints in a network
of cylindrical pipes and then cleanup the convex hull by remov-
ing redundant edges. Compared to that, our approach works
with cone beams, computes exact convex hull of a set of circu-
lar end faces of beams, and directly produces the lowest poly
approximation of the exact convex hull.

Figure 11: A coarse approximation (without refinement) of a
lattice with convex polyhedra for chopped-beams (brown) and
chopped-balls (cyan).

6 Conclusions

We show that the topology and geometry of the convex hull of
n > 2 cospherical circles is surprisingly simple. It has 6n� 10
faces that are each either a disk, a triangle, or a corridor that is
a portion of an elliptic cone bounded by two line segments and
two circular arcs. We suggest a simple and e�cient approach
for computing the connectivity of that convex hull, its vertices,
and the apex of the cone of each corridor. We discuss a possi-
ble application for computing an assembly of simple solids that
approximates a given lattice by the union of Convex-Hulls of
Cospherical Circles (CHoCC). Each CHoCC corresponds to a
beam or a junction of the lattice. The CHoCC of each junc-

tion touches the CHoCC of each of its incident beams along a
disk. But the interiors of the CHoCCs are disjoint. We dis-
cuss tessellations of this model that o↵er di↵erent degrees of
accuracy.
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Computing intersection areas of overlaid 2D meshes

qX _�M/QHT? 6`�MFHBM R �M/ a�HH2b oB�M� :QK2b /2 J�;�H?½2b k

R1*a1 .2Ti- _2Mbb2H�2` SQHvi2+?MB+ AMbiBimi2- h`Qv Lu la�- ?iiTb,ffr`7X2+b2X`TBX2/mf
k.2T�`i�K2MiQ /2 AM7Q`K�iB+�- lMBp2`bB/�/2 62/2`�H /2 oBÏQb�- J:- "`�bBH

�#bi`�+i
S�`Qp2`k Bb � T�`�HH2H �H;Q`Bi?K �M/ T`2HBKBM�`v BKTH2K2Mi�iBQM
iQ +QKTmi2 i?2 �`2� Q7 2p2`v MQM2KTiv BMi2`b2+iBQM Q7 �Mv 7�+2
Q7 QM2 k. K2b? rBi? �Mv 7�+2 7`QK �MQi?2` K2b? Qp2` �M
Qp2`H�TTBM; /QK�BMX h?Bb Bb i?2 ?�`/ T�`i Q7 +`Qbb@BMi2`TQH�iBM;
/�i� 7`QK QM2 K2b? iQ �MQi?2`- 7Q` r?2M i?2 7�+2b QM2 K2b?
?�p2 �M �ii`B#mi2 i?�i rQmH/ #2 mb27mH 7Q` i?2 7�+2b Q7 i?2 Qi?2`
K2b?X S�`Qp2`k- BKTH2K2Mi2/ mbBM; � K�T@`2/m+2 T�`�/B;K
BM h?`mbi- +�M [mB+FHv T`Q+2bb KBHHBQMb Q7 7�+2bX h?2 2tT2+i2/
2t2+miBQM iBK2 Bb HBM2�` BM i?2 MmK#2` Q7 BMi2`b2+iBQMb- r?B+?
Bb mbm�HHv HBM2�` BM i?2 MmK#2` Q7 BMTmi 7�+2bX � mMB7Q`K ;`B/
[mB+FHv /2i2`KBM2b i?2 T�B`b Q7 BMTmi 2/;2b i?�i KB;?i BMi2`b2+iX
GQ+�H iQTQHQ;B+�H 7Q`KmH�2 +QKTmi2 i?2 �`2�b Q7 i?2 QmiTmi 7�+2b
7`QK i?2 b2ib Q7 i?2B` Up2`i2t- 2/;2V �/D�+2M+B2b rfQ M22/BM; iQ
+QKTmi2 i?2 7�+2bǶ ;HQ#�H iQTQHQ;B2bX

R AMi`Q/m+iBQM
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#2 mb27mH 7Q` i?2 7�+2b Q7 M1X UA7 i?2 /2MbBiv p�`B2b- i?2M i?2
K�bb Bb MQi bBKTHv i?2 �`2�XV PM2 [mB+F �TT`QtBK�iBQM 7Q`
i?2 K�bb Q7 f 0- � 7�+2 Q7 M1X Bb � r2B;?i2/ bmK Q7 i?2 K�bb2b
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Q7 irQ TQHv;QMb Bb mb27mH BM BMi2`72`2M+2 /2i2+iBQM BM `Q#QiB+bX
>Qr2p2`- i?2 mbm�H bQHmiBQM Bb 2Bi?2` KQ`2 +QKTHB+�i2/c Bi }`bi
+QKTmi2b i?2 BMi2`b2+iBQM TQHv;QM- �M/ i?2M Bib �`2�- Q` BiǶb
bBKTH2` �M/ i2bib QMHv r?2i?2` i?2 BMi2`b2+iBQM Bb MQM2KTivX

q?BH2 i?2`2 �TT2�`b HBiiH2 �`+?Bp�H HBi2`�im`2 QM /B`2+iHv +QK@
TmiBM; BMi2`b2+iBQM �`2�b- bQK2 r2# T�;2b 2tBbiX h?�i Bb- r?BH2
2p2`v *�. T�+F�;2 +�M T2`7Q`K #QQH2�M QT2`�iBQMb QM TQHv@
;QMb �M/ TQHv?2/`�- �M/ i?2M +�M +QKTmi2 K�bb T`QT2`iB2b-
QTiBKBxBM; i?2 +QKTQbBiBQM Q7 i?Qb2 irQ 7mM+iBQMb Bb `�i?2` `�`2X
L2p2`i?2H2bb- >�`/v (R9) ;Bp2b �M �H;Q`Bi?K rBi? +Q/2 7Q` i?2
�`2� Q7 i?2 BMi2`b2+iBQMX SQHvHB# (Re) QT2`�i2b QM Q#D2+ib i?�i
�`2 mMBQMb Q7 /@. TQHviQT2bX 1/r�`/b (d) /2b+`B#2b ?Qr iQ }M/
i?2 �`2� Q7 i?2 BMi2`b2+iBQM Q7 irQ TQHv;QMb rBi? � ;`�T?BM;
+�H+mH�iQ`X

k .�i� bi`m+im`2b
S�`Qp2`k `2�/b i?2 BMTmi K2b?2b BM QM2 7Q`K�i- �M/ +QKTmi2b
i?2 QmiTmi K2b? BM � /Bz2`2Mi- bBKTH2`- 7Q`K�iX 1�+? 7Q`K�i
Bb bm{+B2Mi 7Q` i?2 M2+2bb�`v +QKTmi�iBQMX h?2 BMTmi K2b?
7Q`K�i Bb /2bB;M2/ iQ +QKTmi2 i?2 Qmi7�+2 p2`iB+2bX h?2 Qmi7�+2
7Q`K�i Bb /2bB;M2/ +QKTmi2 i?2 Qmi7�+2 �`2�bX

h?2 BMTmi K2b? 7Q`K�i Bb i?2 b2i Q7 Bib 2/;2b-
{(x0, y0, x1, y1, fl, fr)}X (x0, y0), (x1, y1) �`2 i?2 +QQ`/BM�i2b Q7
QM2 2/;2Ƕb 2M/ p2`iB+2bX fl �M/ fr �`2 i?2 B/2MiB}2`b UB/bV Q7
Bib �/D�+2Mi 7�+2b iQ i?2 H27i �M/ i?2 `B;?iX h?2`2 �`2 MQ HBbib-
�M/ MQ 2tTHB+Bi p2`iB+2b- 2tTHB+Bi 7�+2b- Q` ?B;?2` H2p2H iQTQHQ;v
bm+? �b i?2 2/;2b �`QmM/ � p2`i2t- i?2 2/;2b �`QmM/ � 7�+2-
M2bi2/ 7�+2b- 2i+X h?�i Bb- �Hi?Qm;? b2p2`�H 2/;2b K�v +QMi�BM
i?2 b�K2 p2`i2t- r2 /Q MQi `2+Q`/ i?BbX q2 /Q MQi `2+Q`/ BM
QM2 TH�+2 �HH i?2 p2`iB+2b +QMi�BM2/ BM QM2 7�+2- 2i+X h?Bb BM7Q
+QmH/ #2 /2`Bp2/ B7 r2 M22/2/ Bi- r?B+? r2 /QMǶiX h?Bb Bb bBKTH2`
i?�M [m�/ 2/;2b �M/ /Qm#Hv +QMM2+i2/ 2/;2 HBbib- #2+�mb2 Bi
T2`KBib 72r2` QT2`�iBQMb U#mi Bi T2`KBib �HH i?2 QT2`�iBQMb i?�i
r2 M22/VX

h?2 Qmi7�+2 7Q`K�i Bb 2p2M bBKTH2`c Bi /Q2b MQi 2p2M biQ`2
+QKTH2i2 2/;2bX Ai Bb � b2i Q7 2/;2@p2`i2t BM+B/2M+2b- �b /2@

R



b+`B#2/ H�i2`X >Qr2p2` Bi T2`KBib i?2 HQ+�H iQTQHQ;B+�H 7Q`KmH�2
/2b+`B#2/ M2ti iQ +QKTmi2 i?2 Qmi7�+2 �`2�bX

j GQ+�H iQTQHQ;B+�H 7Q`KmH�2
h?Bb b2+iBQM rBHH KQiBp�i2 i?2 TQr2` Q7 HQ+�H iQTQHQ;B+�H 7Q`@
KmH�2- #v T`2b2MiBM; �M �H;Q`Bi?K 7Q` +QKTmiBM; i?2 �`2� Q7
� 7�+2 7`QK 2Bi?2` i?2 b2i Q7 Bib p2`i2t TQbBiBQMb �M/ i?2B`
M2B;?#Q`?QQ/b- Q` i?2 b2i Q7 Bib p2`i2t@2/;2 BM+B/2M+2bX h?2
M2B;?#Q`?QQ/ Q7 � p2`i2t Bb /2}M2/ �b i?2 /B`2+iBQM p2+iQ`b Q7
Bib �/D�+2Mi 2/;2b- �M/ r?B+? QM2 Q7 i?2 irQ b2+iQ`b i?�i i?2v
/2}M2 Bb BMbB/2 i?2 7�+2X h?Bb �H;Q`Bi?K /Q2b MQi mb2 i?2 H2M;i?b
Q7 i?2 �/D�+2Mi 2/;2b- MQ` i?2 p2`iB+2b �i i?2B` Qi?2` 2M/bX Ai
`2b2K#H2b :`22MǶb i?2Q`2K- 2t+2Ti i?�i- r?BH2 :`22MǶb i?2Q`2K
+QKTmi2b � TQHv;QMǶb �`2� #v BMi2;`�iBM; �HQM; Bib #QmM/�`v
2/;2b- r2 mb2 QMHv i?2 #QmM/�`v p2`iB+2bX
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6B;m`2 R, .B�;QM�H `2+iB@
HBM2�` TQHv;QM

h?2 ;2M2`�H 7Q`KmH� Bb ;Bp2M BM
(3)X 6Q` � bBKTH2 2t�KTH2- +QM@
bB/2` � /B�;QM�H `2+iBHBM2�` 7�+2
f - �b b?QrM BM 6B;m`2 RX �HH
2/;2b ?�p2 bHQT2 +1 Q` �1X h?2
7�+2 K�v ?�p2 KmHiBTH2 +QKTQ@
M2Mib �M/ M2bi2/ BbH�M/b �M/ ?QH2bX
1�+? p2`i2t rBHH #2 �bbB;M2/ � bB;M
#Bi- s- /2i2`KBM2/ #v Bib M2B;?@
#Q`?QQ/X h?2M i?2 �`2� Q7 i?Bb
BbQi?2iB+ /B�;QM�H f Bb

P
i six

2
i X

6Q` 6B;m`2 R- i?2 �`2� rQmH/ #2
0� 1 + 4� 9 + 16� 4 = 6X �b i?Bb 7Q`KmH� Bb � K�T@`2/m+iBQM-
Bi K�v #2 2{+B2MiHv +QKTmi2/ BM T�`�HH2HX

h?2 T`QQ7 Bb #v BM/m+iBQMX Ai Bb +H2�`Hv i`m2 B7 f Bb � `2+i@
�M;H2X A7 irQ `2+i�M;H2b rBi? � +QKKQM 2/;2 �`2 mMBi2/ �M/
i?Qb2 +QKKQM 2/;2b U�M/ 7Qm` p2`iB+2bV `2KQp2/- i?2M i?2 �`2�
7Q`KmH� `2K�BMb p�HB/X AM i?Bb r�v- �Mv 7�+2 K�v #2 #mBHi mTX
�Mv K�bb T`QT2`iv- bm+? �b � ?B;?2` Q`/2` KQK2Mi- K�v #2
HBF2rBb2 +QKTmi2/X

h?2`2 �`2 K�Mv 7Q`KmH�2 mbBM; /Bz2`2Mi BMTmi 7Q`K�ibX �M@
Qi?2` 7�+2 �`2� 7Q`KmH� K�T@`2/m+2b i?2 b2i Q7 Q`B2Mi2/ 2/;2b-
bmKKBM; i?2 bB;M2/ �`2�b bm#i2M/2/ #v i?2 2/;2b �M/ i?2
+QQ`/BM�i2 Q`B;BMX

q2 +QKTmi2 i?2 Qmi7�+2 �`2�b rBi? � 7Q`KmH� mbBM; i?2 b2i Q7
Up2`i2t- 2/;2V �/D�+2M+B2bX 1�+? p2`i2t M2B;?#Q`?QQ/ +QKT`Bb2b
irQ �/D�+2M+B2bX 6Q` p2`i2t v rBi? �/D�+2Mi 2/;2b e1, e2- i?2v
rQmH/ #2 (v, be1) �M/ (v, be2)X h?2 MQ`K�HBx�iBQM Bb #2+�mb2
r2 FMQr i?2 /B`2+iBQM Q7 i?2 2/;2 #mi MQi Bib H2M;i?X PM2
�/D�+2M+v Bb `2T`2b2Mi2/ �b i?2 i`BTH2 (v,bt, bn)X v Bb i?2 TQbBiBQM
Q7 i?2 p2`i2tX bt Bb � mMBi /B`2+iBQM p2+iQ` �HQM; i?2 2/;2X bn Bb �
mMBi /B`2+iBQM p2+iQ` T2`T2M/B+mH�` iQ bt TQBMiBM; iQ i?2 BMbB/2
bB/2 Q7 i?2 2/;2X bn �//b QMHv QM2 #Bi Q7 BM7Q`K�iBQMX

h?2 �`2� Q7 i?2 ;2M2`�H f Bb
�P�

v · bt
�
(v · bn)

�
/2X h?Bb Bb

T`Qp2/ #v /`QTTBM; � T2`T2M/B+mH�` 7`QK i?2 Q`B;BM iQ 2�+?
2/;2 Q7 f - �M/ T�`iBiBQMBM; f BMiQ 2n `B;?i i`B�M;H2bX h?2
p2`iB+2b Q7 QM2 i`B�M;H2 rBHH #2 i?2 Q`B;BM- � T2`T2M/B+mH�` 7QQi-
�M/ QM2 Q7 i?2 irQ 2M/ p2`iB+2b Q7 i?�i 7QQiǶb 2/;2X h?2M- i?2
bB;M2/ �`2� Q7 QM2 bm+? i`B�M;H2 Bb

�
(v · bt)(v · bn)

�
/2 X

h?2 �#Qp2 /�i� bi`m+im`2 Bb bBKTH2`- bK�HH2`- �M/ 7�bi2` i?�M
i?2 r2HH FMQrM ?�H7@2/;2 /�i� bi`m+im`2 Q7 i?2 /Qm#Hv +QMM2+i2/
2/;2 HBbi- bBM+2 r2 /Q MQi mb2 #Qi? 2M/b Q7 �M 2/;2 iQ;2i?2`X Ai
Bb Km+? bBKTH2` iQ +QKTmi2 Qmi7�+2b BM i?Bb 7Q`K�i i?�M iQ �HbQ
+QKTmi2 i?2B` 2/;2bX

9 Pmi7�+2 �`2� +QKTmi�iBQM bi`�i2;v
1�+? Qmi7�+2 Bb i?2 BMi2`b2+iBQM Q7 irQ BMTmi 7�+2b U�F� BM7�+2bV-
QM2 7`QK 2�+? BMTmi K2b?X �M Qmi7�+2 Bb B/2MiB}2/ #v i?2

Q`/2`2/ T�B` Q7 i?Qb2 irQ BM7�+2bX S�`Qp2`k +QKTmi2b i?2 Qmi@
7�+2 �`2�b #v � K�T@`2/m+iBQM Qp2` i?2 p2`i2t@2/;2 �/D�+2M+B2bX
�b Bi T`Q+2bb2b i?2 BMTmi- Bi /Q2b MQi +QKTmi2 2�+? Qmi7�+2 �HH
�i QM+2X _�i?2`- Bi rBHH +QKTmi2 �M QmiTmi p2`i2t rBi? �HH Bib
p2`i2t@2/;2 �/D�+2M+B2b- i?2M �MQi?2` QmiTmi p2`i2t rBi? �HH
Bib p2`i2t@2/;2 �/D�+2M+B2b- �M/ bQ QMX aQ- Bi �++mKmH�i2b i?2
Qmi7�+2 �`2�b BM+`2K2Mi�HHvX Ai M2p2` +QKTmi2b i?2 QmiTmi 2/;2bX
UA7 M2+2bb�`v- i?2 �/D�+2M+B2b +QmH/ #2 T�B`2/ mT iQ T`Q/m+2 i?2
QmiTmi 2/;2bXV

h?2`2 �`2 irQ ivT2b Q7 QmiTmi p2`i2t@2/;2 �/D�+2M+B2b, �M
�/D�+2M+v Q7 QM2 Q7 i?2 BMTmi K2b?2b Mi- �M/ �M BMi2`b2+iBQM
Q7 �M 2/;2 Q7 M0 rBi? �M 2/;2 Q7 M1X
9XR PmiTmi �/D�+2M+B2b i?�i �`2 BMTmi �/D�+2M+B2b

RX *�HH i?2 BMTmi �/D�+2M+v- hX
kX qBi?Qmi HQbb Q7 ;2M2`�HBiv- �bbmK2 i?�i h Bb BM K2b? M0X
jX h Bb �/D�+2Mi iQ irQ BM7�+2b- +�HH i?2K fl �M/ frX
9X G2i i?2 p2`i2t Q7 h #2 vX v Bb +QMi�BM2/ BM bQK2 7�+2- b�v

f 0- Q7 i?2 Qi?2` K2b?- M1X
8X h Bb T�`i Q7 i?2 irQ Qmi7�+2b (fl, f

0) �M/ (fr, f
0)X

eX h?2 MQ`K�H p2+iQ` +QKTQM2Mi Q7 h K�v M22/ iQ #2 M2;�i2/
/2T2M/BM; QM r?B+? Qmi7�+2 r2 �`2 +QMbB/2`BM;X

dX S�`Qp2`k rBHH +QKTmi2 �M �`2� +QKTQM2Mi 7Q` i?2 irQ
Qmi7�+2bX 1�+? +QKTQM2Mi Bb Q7 i?2 7Q`K UQmi7�+2@B/- �`2�@
+QKTQM2MiVX

3X h?2 iQi�H �`2� Q7 2�+? Qmi7�+2 Bb Q#i�BM2/ #v bmKKBM; Bib
+QKTQM2Mib- �b /2b+`B#2/ H�i2`X

h?2`2 �`2 i?`22 MQMi`BpB�H T�`ib ?2`2, i?2 i2/BQmb T`Q+2bb Q7 ;2i@
iBM; i?2 b2p2`�H /Bz2`2Mi bT2+B�H +�b2b +Q``2+i- biQ`BM; i?2 �`2�
+QKTQM2Mib- �M/ TQBMi HQ+�iBQMX aiQ`BM; i?2 �`2� +QKTQM2Mib
Bb +QKTHB+�i2/X q2 �`2 +QKTmiBM; �M/ biQ`BM; i?2 +QKTQ@
M2Mib BM T�`�HH2HX q2 /Q MQi FMQr BM �/p�M+2 i?2 B/b Q7 i?2
MQM2KTiv Qmi7�+2bX q2 /Q MQi FMQr BM �/p�M+2 ?Qr K�Mv +QK@
TQM2Mib 2�+? Qmi7�+2 rBHH ?�p2 U�F� ?Qr K�Mv p2`iB+2b Bi ?�bVX
S�`Qp2`k mb2b � p2+iQ` Q7 i?2 UQmi7�+2@B/- �`2�@+QKTQM2MiV
T�B`b �b 7QHHQrbX

RX h?2 bBx2 Q7 i?2 p2+iQ` Bb 7Qm` iBK2b i?2 MmK#2` Q7 BMTmi
2/;2b BM i?2 irQ K2b?2b +QK#BM2/X

kX h?2 i@i? BMTmi 2/;2 rBHH +`2�i2 QmiTmi T�B`b MmK#2`2/ 4i
iQ 4i+ 3X aQ- i?2 QmiTmi T�B`b +�M #2 r`Bii2M BM T�`�HH2H
rfQ M22/BM; b2K�T?Q`2b Q` HQ+FbX aT2+B}+�HHv- r2 /2}M2 �
7mM+iBQM i?�i K�Tb 7`QK BM/2t i iQ QmiTmi T�B` i- �M/ i?2M
K�T i?�i 7mM+iBQM Qp2` i?2 BM/2t p2+iQ` 0, 1, 2, ...X

jX 6BM�HHv r2 bQ`i i?2 p2+iQ` #v Qmi7�+2@B/ �M/ T2`7Q`K �
T�`�HH2H `2/m+2@#v@F2v- r?B+? bmKb i?2 �`2� +QKTQM2Mib
rBi? i?2 b�K2 Qmi7�+2@B/X

9X h?2 bHQr2bi bi2T Bb i?2 bQ`iX >Qr2p2`- 2p2`v �Hi2`M�iBp2-
bm+? � ?�b? i�#H2 F2v2/ #v i?2 Qmi7�+2@B/- Q` HBMF2/ HBbib-
�TT2�`b rQ`b2X

6Q` HQ+�iBM; r?B+? 7�+2 Q7 M1 +QMi�BMb v- r2 mb2 � mMB7Q`K
;`B/- �F� #m+F2i bQ`iX h?2 2tT2+i2/ [m2`v iBK2 Bb +QMbi�Mi T2`
TQBMi HQ+�iBQM- BM/2T2M/2Mi Q7 i?2 K�T bBx2X h?2 T`2T`Q+2bbBM;
�H;Q`Bi?K ;Q2b �b 7QHHQrb,

RX .2i2`KBM2 i?2 K�tBKmK HBM2�` bBx2 Q7 �Mv 7�+2 BM 2Bi?2`
/B`2+iBQM Ux Q` yVX

kX amT2`BKTQb2 � ;`B/ Q7 g ⇥ g +2HHb Qp2` i?2 K2b?2bX g Bb
+?Qb2M bQ i?�i � +2HH Bb bHB;?iHv i�HH2` �M/ rB/2` i?�M i?2
H�`;2bi 7�+2X

A:a kyRN SQbi2` k



jX 6Q` 2�+? BMTmi 2/;2 e- +QKTmi2 � bmT2`b2i Q7 bBx2 9 Q7 i?2
;`B/ +2HHb i?�i BMi2`b2+i eX "2+�mb2 Q7 i?2 +?QB+2 Q7 g- i?2
�+im�H MmK#2` Q7 +2HHb BMi2`b2+iBM; e `�M;2b 7`QK 1 iQ 3X
6Q` T`Q;`�KKBM; 2�b2- r2 +B`+mKb+`B#2 e rBi? � #Qt �M/
mb2 �HH i?2 +2HHb BMi2`b2+iBM; i?�i #QtX h?Bb �pQB/b 2t�+iHv
+QKTmiBM;ěBM T�`�HH2Hěi?2 BMi2`b2+iBM; +2HHb- r?B+? rQmH/
`2[mB`2 B/2MiB7vBM;- BM +QMbi�Mi iBK2- i?2 i@i? BMi2`b2+iBM;
+2HHX

9X qQ`FBM; BM T�`�HH2H Qp2` i?2 2/;2b- 7Q`K � p2+iQ` Q7 i?2b2
T�B`bX

8X aQ`i Bi #v +2HH B/X
eX lb2 � T�`�HH2H b+�M 7mM+iBQM iQ }M/ i?2 bi�`i Q7 2�+? +2HHǶb

2/;2b BM i?2 bQ`i2/ p2+iQ`- �M/ i?2 MmK#2` Q7 2/;2b BM 2�+?
+2HHX

h?2 iQi�H T`2T`Q+2bbBM; 2t2+miBQM iBK2 Bb HBM2�` BM i?2 BMTmi
bBx2 #2+�mb2 U�V 7Q` bQ`iBM; #v +2HH B/b- � HBM2�`@iBK2 `�/Bt bQ`i
Bb �TTHB+�#H2- �M/ U#V i?2 Qi?2` bi2Tb �`2 HBM2�` BM i?2 MmK#2`
Q7 T�B`b U�M/ 7�biVX

h?2 [m2`v �H;Q`Bi?K iQ HQ+�i2 r?B+? 7�+2 K2b? M1 +QMi�BMb
TQBMi q 7`QK K2b? M0 Bb i?Bb,

RX *QKTmi2 r?B+? ;`B/ +2HH +QMi�BMb qX Uh?Bb Bb bBKTHv irQ
KQ/mHQ QT2`�iBQMb QM qǶb +QQ`/BM�i2bXV

kX S`Q+2bb i?2 2/;2b Q7 M1 i?�i �`2 BM i?2 b�K2 +2HH �b q �b
7QHHQrb- BM T�`�HH2H Qp2` i?2 2/;2b- �b 7QHHQrbX U�V _mM �
p2`iB+�H HBM2 mT �M/ /QrM 7`QK q i?`Qm;? i?2 +2HHX U#V aFBT
2/;2b i?�i �`2 MQi BMi2`b2+i2/X U+V 6Q` 2�+? 2/;2 i?�i Bb
BMi2`b2+i2/- +QKTmi2 i?2 p2`iB+�H /Bbi�M+2 7`QK q iQ i?2
2/;2X U/V _2im`M i?2 �#bQHmi2Hv +HQb2bi 2/;2X

jX A7 MQ 2/;2 r�b p2`iB+�HHv �#Qp2 Q` #2HQr q- i?2M i?2 +QM@
i�BMBM; 7�+2 Bb i?2 2ti2`M�H 7�+2X h?Bb Bb #2+�mb2 i?2 ;`B/
bBx2 Bb H�`;2 2MQm;? i?�i Bi Bb BKTQbbB#H2 iQ � 7�+2 iQ 2ti2M/
#2vQM/ � +2HH BM #Qi? /B`2+iBQMbX

9X Pi?2`rBb2 i?2 +QMi�BMBM; 7�+2 Bb QM2 Q7 i?2 irQ 7�+2b �/@
D�+2Mi iQ i?2 +HQb2bi 2/;2X q?B+? QM2 Bb /2i2`KBM2/ #v
r?2i?2` i?2 2/;2 Bb �#Qp2 Q` #2HQr q �M/ r?2i?2` Bib }`bi
p2`i2t Bb iQ i?2 H27i Q` `B;?i Q7 Bib b2+QM/ p2`i2tX

h?2 2t2+miBQM iBK2 iQ [m2`v q Bb HBM2�` BM i?2 MmK#2` Q7 2/;2b
BM Bib ;`B/ +2HHX aBM+2 i?2 +2HH bBx2 Bb bHB;?iHv H�`;2` i?�M i?2
H�`;2bi 7�+2- i?�i /2T2M/b QM i?2 `�iBQ #2ir22M i?2 �p2`�;2
7�+2 bBx2 �M/ i?2 H�`;2bi 7�+2 bBx2- r?B+? Bb � +QMbi�Mi < 4 7Q`
K�Mv +QKKQM /Bbi`B#miBQMb Q7 7�+2 bBx2b- BM+Hm/BM; mMB7Q`K �M/
:�mbbB�MX aQ- i?2 2tT2+i2/ [m2`v iBK2 T2` TQBMi Bb +QMbi�MiX
9Xk PmiTmi �/D�+2M+B2b i?�i �`2 i?2 BMi2`b2+iBQMb

Q7 irQ BMTmi 2/;2b
h?Bb +�b2 /Bz2`b 7`QK i?2 T`2pBQmb +�b2 BM irQ r�vbX 6B`bi- r2
Kmbi +QKTmi2 i?2 BMi2`b2+iBQMb Q7 2/;2b 7`QK M0 rBi? 2/;2b
7`QK M1X 1�+? BMi2`b2+iBQM Bb � p2`i2t Q7 7Qm` Qmi7�+2b �M/
;2M2`�i2b irQ �/D�+2M+B2b T2` 7�+2- 7Q` � iQi�H Q7 2B;?i Qmi7�+2
�/D�+2M+B2b T2` BMi2`b2+iBQMX a2+QM/- i?2`2 Bb MQ M22/ 7Q` TQBMi
HQ+�iBQM #2+�mb2 ?2`2 r2 FMQr i?2 Qmi7�+2 B/bX

LQi2 i?�i irQ 2/;2b i?�i BMi2`b2+i 2�+? Qi?2` Kmbi #Qi?
BMi2`b2+i i?2 b�K2 ;`B/ +2HH- #mi MQi �HH T�B`b Q7 2/;2b BM i?2
b�K2 +2HH rBHH BMi2`b2+iX h?2 2/;2 T�B`b BM � +2HH +�M #2 BM/2t2/
bQ i?�i i?2 i@i? T�B` +�M #2 /2i2`KBM2/ BM +QMbi�Mi iBK2X A7 i?2
2/;2b �`2 BM/2T2M/2MiHv �M/ B/2MiB+�HHv /Bbi`B#mi2/- i?2M i?2
T`Q#�#BHBiv Q7 � T�B` Q7 2/;2b BM i?2 b�K2 +2HH BMi2`b2+iBM; 2�+?
Qi?2` Bb +QMbi�Mi- BM/2T2M/2Mi Q7 i?2 iQi�H MmK#2` Q7 2/;2bX

h?2 �H;Q`Bi?K ;Q2b �b 7QHHQrbX
RX *QKTmi2 i?2 K�tBKmK TQbbB#H2 MmK#2` Q7 2/;2 BMi2`b2+@

iBQMb T2` +2HH �M/ �HHQ+�i2 bT�+2 7Q` � p2+iQ` Q7 BMi2`b2+iBQMb

7`QK �HH +2HHbX
kX SQTmH�i2 i?�i p2+iQ` rBi? i?2 T�B`b Q7 TQbbB#Hv BMi2`b2+iBM;

2/;2bX LQi2 i?�i i?Bb T�`�HH2HBx2b #2+�mb2 Q7 i?2 �#Qp2
Q#b2`p�iBQMbX AX2X- r2 +�M /2i2`KBM2 BM +QMbi�Mi iBK2 i?2
i@i? 2H2K2Mi Q7 i?�i p2+iQ`X

jX 6BHi2` i?�i p2+iQ` #v r?2i?2` Q` MQi i?2 2/;2b /Q BMi2`b2+iX
9X J�T i?2 `2bmHiBM; p2+iQ` BMiQ � p2+iQ` Q7 Q+imTH2b Q7 Qmi7�+2

�/D�+2M+B2bX
8X aQ`i- `2/m+2 #v F2v- �M/ bmKX

h?Bb T�`�HH2HBx2b r2HHX h?2 2tT2+i2/ 2t2+miBQM iBK2 Bb HBM2�` BM
i?2 MmK#2` Q7 BMTmi 2/;2bX �M �/p2`b�`v +QmH/ ;2M2`�i2 #�/
BMTmi +�b2b- #mi Qi?2` /�i� bi`m+im`2b bm+? �b [m�/i`22b +�M
�HbQ #2 K�/2 iQ T2`7Q`K TQQ`Hv- �M/ i?2v /QMǶi T�`�HH2HBx2 r2HHX
q2 /Q MQi #2HB2p2 i?�i `2�H /�i� rQmH/ ?�p2 i?Bb T`Q#H2KX

8 AKTHB+�iBQMb Q7 i?2 i�`;2i TH�i7Q`K
h?2 /2bB;M +?QB+2b BM S�`Qp2`k �`2 KQiBp�i2/ #v i?2 ;Q�H
Q7 2p2Mim�H 2t2+miBQM QM �M LpB/B� :SlX ULpB/B� r�b +?Qb2M
#2+�mb2 Bi Bb +m``2MiHv #v 7�` i?2 KQbi +QKKQM �M/ KQbi +Qbi@
2z2+iBp2 :SlXV � :Sl 2t2+mi2b i?Qmb�M/b Q7 i?`2�/b BM T�`�HH2H-
rBi? i?2 i?`2�/b ;`QmT2/ #v jk BMiQ r�`TbX �HH jk i?`2�/b BM
QM2 r�`T bBKmHi�M2QmbHv 2t2+mi2 i?2 b�K2 BMbi`m+iBQM- B/2�HHv
QM /�i� 7`QK bm++2bbBp2 rQ`/b BM K2KQ`vX h?2 QMHv 2t+2TiBQM
Bb i?�i bQK2 i?`2�/b BM i?2 r�`T K�v #2 B/H2X

1{+B2Mi �H;Q`Bi?Kb 7Q` � :Sl T`272` /�i� bi`m+im`2b i?�i
�`2 �``�vb Q7 TH�BM QH/ /�i� ivT2b- MQi 2p2M �``�vb Q7 bi`m+im`2bX
*QM/BiBQM�Hb ?m`i T2`7Q`K�M+2X SQBMi2`b �`2 bi`QM;Hv iQ #2
/2T`2+�i2/X 1p2M `�M/QKHv �++2bbBM; 2H2K2Mib Bb MQi B/2�HX

h?2`27Q`2 +QKTH2t �M/ �/�TiBp2 /�i� bi`m+im`2b bm+? �b br22T
HBM2b �M/ i`22b �`2 p2`v /B{+mHi iQ T�`�HH2HBx2X h?Bb Bb 2bT2+B�HHv
i`m2 r?2M mbBM; ?mM/`2/b Q` i?Qmb�M/b Q7 i?`2�/bX �HH i?Bb ;2ib
Km+? rQ`b2 BM j.X >2M+2 Qm` T`272`2M+2 7Q` bBKTH2 ~�i /�i�
bi`m+im`2b HBF2 mMB7Q`K ;`B/bX

aBKTH2 ~�i /�i� bi`m+im`2b ?�p2 �MQi?2` �/p�Mi�;2c i?2v
�`2 KQ`2 +QKT�+ic i?2v i�F2 H2bb bT�+2X AM K�Mv T�`�HH2H
T`Q;`�Kb- i?2 AfP iBK2 iQ `2�/ �M/ r`Bi2 i?2 /�i� /QKBM�i2b
i?2 +QKTmi�iBQM iBK2X �Hi?Qm;? ?Qbib �M/ /2pB+2b ?�p2 � HQi
Q7 K2KQ`v �b /2b+`B#2/ �#Qp2- Bi Bb bHQr- #mi i?2v ?�p2 bK�HH
7�bi +�+?2b �M/ `2;Bbi2` #�MFbX

e AKTH2K2Mi�iBQM
S�`Qp2`k Bb BKTH2K2Mi2/ BM *YY QM � /m�H R9@+Q`2 kXy:>x
AMi2H s2QM rBi? k8e:" Q7 K2KQ`v- `mMMBM; l#mMim GBMmtX
h?2 T�`�HH2H 2MpB`QMK2Mi Bb LpB/B�Ƕb h?`mbi- r?B+? Bb � b2i Q7
T�`�HH2H *YY +H�bb2b �M/ `QmiBM2b i?�i K�T �M/ `2/m+2 p2+iQ`bX
Ai Bb � T�`�HH2H 2ti2MbBQM Q7 T�`ib Q7 i?2 ai�M/�`/ h2KTH�i2
GB#`�`v �M/ "QQbi(9)X h?`mbi Bb `2�bQM�#Hv K�im`2- �M/ b22Kb
iQ `2T`2b2Mi � ;QQ/ K2/BmK #2BM; � ?B;? H2p2H �#bi`�+iBQM �M/
#2BM; 2{+B2MiX h?`mbi ?�b b2p2`�H TQbbB#H2 #�+F2M/b- BM+Hm/BM;
PT2MJS �M/ *l.�X S�`Qp2`k +m``2MiHv mb2b PT2MJS- rBi?
*l.� bmTTQ`i #2BM; /2#m;;2/X

Pm` BMBiB�H i2bi +�b2b �`2 T�B`b Q7 Qp2`H�TTBM; b[m�`2 K2b?2bX
hBK2b �`2 b?QrM BM h�#H2 RX h?2 i2bi iBK2b bi�`i �7i2` i?2
/�i� ?�b #22M `2�/X h?2 �//BiBQM�H iBK2 iQ `2�/ i?2 /�i�- 7`QK
�a*AA }H2b biQ`2/ BM `2�H K2KQ`v- Bb �#Qmi 3yW Q7 i?2 T`Q+2bbBM;
iBK2X A7 i?2 B/2MiB+�H DQ# Bb `2`mM- i?2 iBK2 K�v p�`v #v RyWX
h?2 T�`�HH2H bT22/mT QM i?Bb bvbi2K rBi? k3 i?`2�/b �M/ 8e
?vT2`i?`2�/b r�b � 7�+iQ` Q7 eXjX PM2 HBKBiBM; 7�+iQ` Bb i?�i
i?2 T`Q+2bbQ`b �miQK�iB+�HHv Qp2`+HQ+F 7`QK kXy:>x iQ jXk:>x
r?2M HB;?iHv HQ�/2/- #mi `mM KQ`2 bHQrHv r?2M 2t2+miBM; K�Mv
T�`�HH2H i?`2�/bX h?Bb Bb ivTB+�H Q7 KmHiB+Q`2 *Slb- �M/ b2`p2b

A:a kyRN SQbi2` j



LQX BMTmi 2/;2b LQX QmiTmi 7�+2b 1H�Tb2/ iBK2 Ub2+V
kky 9yy Xykj

j-dky j-eyy Xyjk
9y-9yy 9y-yyy Xy3k

jeR-kyy jey-yyy X9d
9-yy9-yyy 9-yyy-yyy eXk

h�#H2 R, 1H�Tb2/ iBK2 iQ +QKTmi2 BMi2`b2+iBQM �`2�b Q7 irQ
K2b?2b

iQ HBKBi i?2 ?2�iX h?2 *Sl iBK2 BM+`2�b2/ K�bbBp2Hv rBi?
i?2 T�`�HH2HBbKc 7Q` 8e i?`2�/b Bi r�b RN3 *Sl b2+QM/bX h?Bb
Bb B``2H2p�Mi #2+�mb2 i?2 mbm�H K2i`B+ 7Q` T�`�HH2H T`Q;`�Kb Bb
2H�Tb2/ r�HH@+HQ+F iBK2X

d 1ti2MbBQM iQ j.
h?2 ;Q�H Q7 i?Bb T`QD2+i Bb iQ +QKTmi2 i?2 pQHmK2b Q7 �HH i?2
BMi2`b2+iBM; `2;BQMb 7`QK irQ Qp2`H�B/ K2b?2b BM j.X h?2 K2b?
TQHv?2/`� K�v #2 i2i`�?2/`�- ?2t�?2/`�- Q` Qi?2` TQHv?2/`�X
h?2 +QM+2Tim�H 2ti2MbBQM Bb bK�HHc i?2 /B{+mHiB2b KQbiHv T`�+@
iB+�HX AM/22/- r2 2tT2+i i?�i i?2 iQQHb i?�i K�F2 S�`Qp2`k
rQ`F- BX2X- HQ+�H iQTQ;B+�H 7Q`KmH�2 �M/ mMB7Q`K ;`B/- rBHH #2
2p2M KQ`2 p�Hm�#H2 BM j.- BM S�`Qp2`jX

1�+? BMTmi K2b? 7Q` S�`Qp2`j Bb � b2i Q7 7�+2b- 2�+? i�;;2/
rBi? i?2 B/b Q7 Bib �/D�+2Mi TQHv?2/`�X h?2 QmiTmi Bb i?2 b2i Q7
i?2 T�B`b Q7 BMTmi TQHv?2/`� i?�i ?�p2 � MQM2KTiv BMi2`b2+iBQM-
iQ;2i?2` rBi? i?�i BMi2`b2+iBQMǶb pQHmK2X

Pm` pQHmK2 7Q`KmH� 7Q` � TQHv?2/`QM Bb � K�T@`2/m+2 Qp2`
i?2 b2i Q7 j. �/D�+2M+B2bX � j. �/D�+2M+v Bb � 9@imTH2 (v,bt, bn,bb)-
r?2`2 v Bb i?2 TQbBiBQM Q7 � p2`i2t- bt Bb � mMBi p2+iQ` i�M;2Mi
iQ �M �/D�+2Mi 2/;2- bn Bb � mMBi p2+iQ` MQ`K�H iQ bt �M/ BM i?2
TH�M2 Q7 � 7�+2 �/D�+2Mi iQ i?�i p2`i2t �M/ 2/;2- �M/ bb Bb � mMBi
#BMQ`K�H p2+iQ`- MQ`K�H iQ #Qi? bt �M/ bn �M/ TQBMiBM; iQr�`/b
i?2 BMi2`BQ` Q7 i?�i 7�+2X

A7 v ?�b k �/D�+2Mi 2/;2b- i?2M Bi rBHH ?�p2 2k �/D�+2M+B2bX
h?2 pQHmK2 Q7 i?2 TQHv?2/`QM Bb

�P
((v ·bt)(v · bn)(v ·bb)

�
/6X h?2

mMM2+2bbBiv Q7 �Mv ;HQ#�H iQTQHQ;B+�H BM7Q- 2p2M +QKTH2i2 2/;2b
Q` 7�+2b- K�F2b i?Bb 7Q`KmH� 2�bB2` iQ �TTHv iQ i?2 BMi2`b2+iBQM
Q7 irQ j. K2b?2bX

lMBQMj (N- Ry) Bb �MQi?2` T�`�HH2H �H;Q`Bi?K �M/ BKTH2K2M@
i�iBQM i?�i /2KQMbi`�i2b i?2 p�HB/Biv �M/ 2{+B2M+v Q7 i?2b2
B/2�bX lMBQMj +QKTmi2b i?2 pQHmK2 Q7 i?2 mMBQM Q7 KBHHBQMb Q7
+QM;`m2Mi BbQi?2iB+ +m#2bX q?2M i?2 +m#2bǶ TQbBiBQMb �`2 BXBX/X-
i?2 2tT2+i2/ 2t2+miBQM iBK2 Bb HBM2�` BM i?2 MmK#2` Q7 +m#2b-
2p2M B7 i?2 MmK#2` Q7 7�+2@2/;2 �M/ 7�+2@7�+2@7�+2 BMi2`b2+iBQMb
;`Qrb bmT2`HBM2�`HvX h?2 `2�bQM Bb i?�i QMHv i?Qb2 BMi2`b2+iBQMb
i?�i �`2 MQi BMbB/2 �Mv BMTmi +m#2 #2+QK2 QmiTmi p2`iB+2bX h?�i
MmK#2` ;`Qrb QMHv HBM2�`HvX q?2M � +2HH Bb +QKTH2i2Hv BMbB/2 �
+m#2- i?2 TQbbB#Hv bmT2`HBM2�` MmK#2` Q7 BMi2`b2+iBQMb BMbB/2 Bi
�`2 M2p2` +QKTmi2/X � KQ`2 /2i�BH2/ i?2Q`2iB+�H �M�HvbBb- rBi?
BKTH2K2MiBQM /2i�BHb �M/ i2bi `2bmHib Bb ;Bp2M BM i?2 `272`2M+2bX

_272`2M+2b
(R) a�Km2H �m/2i- *2+BHB� �H#2`ibbQM- J�b�M� Jm`�b2- �M/ �FB?B`Q

�b�?�`�X kyRjX _Q#mbi �M/ 1{+B2Mi SQHv;QM Pp2`H�v QM S�`�HH2H
ai`2�K S`Q+2bbQ`bX AM S`Q+22/BM;b Q7 i?2 kRbi �*J aA:aS�hA�G
AMi2`M�iBQM�H *QM72`2M+2 QM �/p�M+2b BM :2Q;`�T?B+ AM7Q`K�iBQM
avbi2Kb UaA:aS�hA�GǶRjVX �*J- L2r uQ`F- Lu- la�- jy9ĜjRjX
?iiTb,ff/QBXQ`;fRyXRR98fk8k8jR9Xk8k8j8k

(k) J�`F /2 "2`;- Pi7`B2/ *?2QM;- J�`+ p�M E`2p2H/- �M/ J�`F Pp2`@
K�`bX kyy3X *QKTmi�iBQM�H :2QK2i`v, �H;Q`Bi?Kb �M/ �TTHB+�iBQMb
Uj`/ 2/XVX aT`BM;2`@o2`H�; h1GPa- a�Mi� *H�`�- *�- la�X

(j) *:�GX kyR3X *QKTmi�iBQM�H :2QK2i`v �H;Q`Bi?Kb GB#`�`vX UkyR3VX
_2i`B2p2/ kyR3@yN@yN 7`QK ?iiTb,ffrrrX+;�HXQ`;

(9) "2K�M .�r2b- .�pB/ �#`�?�Kb- �M/ _2M2 _Bp2`�X kyRyX "QQbi *YY
HB#`�`B2bX UkyRyVX _2i`B2p2/ kyR3@yN@yN 7`QK ?iiT,ffrrrX#QQbiXQ`;f

(8) a�HH2b oB�M� :QK2b /2 J�;�H?½2bX kyRdX 1t�+i �M/ T�`�HH2H BMi2`@
b2+iBQM Q7 j. i`B�M;mH�` K2b?2bX S?X.X .Bbb2`i�iBQMX _2Mbb2H�2`
SQHvi2+?MB+ AMbiBimi2- h`Qv- Lu- la�X

(e) J�ii?BDb .Qmx2- C2�M@aû#�biB2M 6`�M+Q- �M/ "`mMQ _�{MX kyR8X
ZmB+F*a:, �`#Bi`�`v �M/ 7�bi2` #QQH2�M +QK#BM�iBQMb Q7 M bQHB/bX
S?X.X .Bbb2`i�iBQMX AM`B�@_2b2�`+? *2Mi`2- :`2MQ#H2Ĝ_?ƬM2@�HT2b-
6`�M+2X

(d) *X *X 1/r�`/bX kyR3X >Qr iQ 6BM/ i?2 �`2� Q7 i?2 AM@
i2`b2+iBQM Q7 hrQ SQHv;QMbX UkyR3VX _2i`B2p2/ kyRN@yj@
R3 7`QK ?iiTb,ffrrrX/mKKB2bX+QKf2/m+�iBQMf;`�T?BM;@+�H+mH�iQ`bf
?Qr@iQ@7BM/@i?2@�`2�@Q7@i?2@BMi2`b2+iBQM@Q7@irQ@TQHv;QMbf

(3) qK _�M/QHT? 6`�MFHBMX RN3dX SQHv;QM T`QT2`iB2b +�H+mH�i2/ 7`QK i?2
p2`i2t M2B;?#Q`?QQ/bX AM S`Q+X j`/ �MMmX �*J avKTQbX *QKTmiX
:2QKX RRyĜRR3X

(N) qX _�M/QHT? 6`�MFHBMX kyy9X �M�HvbBb Q7 J�bb S`QT2`iB2b Q7 i?2
lMBQM Q7 JBHHBQMb Q7 SQHv?2/`�X AM :2QK2i`B+ JQ/2HBM; �M/ *QK@
TmiBM;, a2�iiH2 kyyj- JX GX Gm+B�M �M/ JX L2�Kim U1/bXVX L�b?#Q`Q
S`2bb- "`2MirQQ/ hL- R3NĜkykX

(Ry) qKX _�M/QHT? 6`�MFHBMX kyy8X J�bb S`QT2`iB2b Q7 i?2 lMBQM Q7
JBHHBQMb Q7 A/2MiB+�H *m#2bX AM :2QK2i`B+ �M/ �H;Q`Bi?KB+ �b@
T2+ib Q7 *QKTmi2` �B/2/ .2bB;M �M/ J�Mm7�+im`BM;- .AJ�*a
a2`B2b BM .Bb+`2i2 J�i?2K�iB+b �M/ h?2Q`2iB+�H *QKTmi2` a+B2M+2-
_�pB C�M�`/�M- .2#�b?Bb? .mii�- �M/ JB+?B2H aKB/ U1/bXVX oQHX edX
�K2`B+�M J�i?2K�iB+�H aQ+B2iv- jkNĜj98X

(RR) qX _�M/QHT? 6`�MFHBM- a�HH2b oX :X J�;�H?½2b- �M/ J�`+mb oX �X
�M/`�/2X kyRdX j.@1Sl:@Pp2`H�v, AMi2`b2+iBM; p2`v H�`;2 j. i`B�M@
;mH�iBQMb BM T�`�HH2HX AM kyRd aA�J +QM72`2M+2 QM BM/mbi`B�H �M/
�TTHB2/ ;2QK2i`vX SBiib#m`;? S� la�X Ui�HFVX

(Rk) qX _�M/QHT? 6`�MFHBM- a�HH2b oX :X J�;�H?½2b- �M/ J�`+mb oX �X
�M/`�/2X kyRdX �M 2t�+i �M/ 2{+B2Mi j. K2b? BMi2`b2+iBQM �H;Q`Bi?K
mbBM; QMHv Q`B2Mi�iBQM T`2/B+�i2bX AM ajSJ@kyRd, AMi2`M�iBQM�H
*QMp2MiBQM QM a?�T2- aQHB/- ai`m+im`2- � S?vbB+�H JQ/2HBM;-
a?�T2 JQ/2HBM; AMi2`M�iBQM�H UaJA@kyRdV avKTQbBmKX "2`F2H2v-
*�HB7Q`MB�- la�X UTQbi2`VX

(Rj) qX _�M/QHT? 6`�MFHBM- a�HH2b oX :X J�;�H?½2b- �M/ J�`+mb oX �X
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Abstract

Recent advances in deep learning have led to super-human per-
formance on various tasks in image analysis. In particular, the
spatial and temporal weight-sharing in convolutional and recur-
rent neural network architectures has allowed for e�cient feature
learning, forming the basis for solving higher order tasks. Suc-
cessfully solving these tasks relies on large, high-quality labeled
datasets, typically created in a time-consuming and expensive
process involving human annotators. Thus, there is increasing
demand for methods that automate parts of the labelling pro-
cess, in order to enable quicker and higher quality training data.
In this work we extend two such recent approaches known as
PolygonRNN [2] and PolygonRNN++ [1] to a spline-based
approach that we call SplineRNN. The benefits of SplineRNN
with respect to PolygonRNN and PolygonRNN++ include
higher order approximations and the need for fewer control
points to represent smooth geometry, whilst maintaining simple
methods for manipulating the geometry by a human user.

1 Introduction

1.1 Machine learning

Following a standard definition of machine learning [5], “a
computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P , if
its performance at tasks in T , as measured by P improves with
experience E.” As an example, a machine might learn from a
large image dataset E, to perform classification, localization or
segmentation tasks T with some accuracy P .

Supervised learning

Supervised learning is a machine learning paradigm where a
model is trained to perform the task of predicting the labels
y corresponding to input data x. From a probabilistic point
of view, this amounts to estimating a conditional probability
distribution p(y |x) from a dataset of pairs E = {(xi, yi)}mi=1.

Recent developments in supervised learning have made it
possible to achieve superhuman performance in various predic-
tion tasks, by extracting knowledge from human experts and
transferring this to algorithms in the form of neural networks.

Compared to traditional machine learning methods, state-of-
the-art deep neural networks have the potential of achieving
vastly better performance P . However, this potential comes
at the price of longer training times, as well as an increased
appetite for labeled data. Creating such large labeled data-
sets is a time-consuming and expensive endeavour. Hence, the
success of deep learning relies on e�cient methods for creating
training data.

Segmentation

One type of labeled training data is images segmented according
to instance or object. The corresponding image segmentation
task is important in various application domains, for instance

for labeling approaching vehicles in autonomous driving and
identifying and marking tissue in medical images for the purpose
of resection.

In many cases, segmentation is a di�cult and ambiguous
task. Recently proposed methods for semi-automatic object
segmentation (PolygonRNN, PolygonRNN++) use predicted
polygonal boundaries delineating object masks. The human
annotator specifies a bounding box around the object to be
segmented, and a bounding polygon is predicted. The use of a
polygon facilitates easy correction by a human annotator.

1.2 Geometric modelling

Splines have long been a popular tool for geometric modelling
for a number of reasons. From the geometric point of view,
their modern representation as linear combinations of B-splines
equips them with several desirable properties. This represen-
tation makes it possible to impose and directly control the
smoothness as desired. Extra degrees of freedom can easily
be inserted by either refining the geometry, raising the degree,
or decreasing the smoothness. The underlying B-splines enjoy
local support, making it possible to modify the geometric object
locally without changing the object elsewhere. Spline curves
lie in the convex hull of their control points, allowing for an
intuitive behaviour of the spline, with respect to the control
points. From the computational point of view, this property
guarantees a numerically stable evaluation. Being composed
of higher order polynomials on intervals of limited size, splines
can approximate smooth data with a higher order of approxi-
mation. For predominantly smooth geometric objects, splines
also provide a compact representation.

2 Method

2.1 Problem formulation

In image segmentation, one commonly used performance mea-
sure P is the intersection over union (IoU) of the predicted
mask and the ground truth mask. This is defined in terms of
sets as

IoU(A,B) :=
|A \B|
|A [B| , (2.1)

and gives a measure of how good an overlap there is between the
predicted object mask, and the ground truth object mask. Note
that 0  IoU(A,B)  1, attaining the lower bound only for
disjoint objects and the upper bound only for identical objects.

Ideally, we would like to optimize the network for this per-
formance measure directly. However, in the general case it is
not clear how to di↵erentiate the intersection over union map,
making it not viable to train neural networks using the standard
method of backpropagation.

Several options to direct optimization of IoU exist. By inter-
preting the IoU as a reward-signal, one may incorporate the
IoU in the optimization in an approach based on reinforcement
learning, as done in PolygonRNN++. Another approach is
to limit the number of possible control point locations, and
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restrict control points to lie in a discretized output-grid super-
imposed over the image. By doing this, the task of control point
prediction can be recast as a binary classification task. This
discretization however comes at a loss of freedom in where the
control points are allowed to go. This approach was used in
PolygonRNN and yielded good results.

In SplineRNN we decide to adopt the latter approach. The
output from the network at a given time step is a probability
distribution over the possible control point locations. Using
cross entropy, this probability distribution is compared to the
ground truth. We train the network using cross-entropy loss.

2.2 Model architecture

In its current iteration, the proposed SplineRNN is a direct
adaptation of the PolygonRNN architecture (see [3] for imple-
mentation details). It can be seen as consisting of two distinct
components. A convolutional neural network (CNN) is used for
encoding the input image into a set of features. These image
features are then fed into a recurrent neural network (RNN).
This RNN uses this information to predict a sequence of control
points which delineates a spline. The network is depicted in
Figure 1.

The convolutional neural network

The CNN-component consists of a modified VGG-16 [8] em-
ploying skip-connections from each layer of the VGG. The
skip-connections are there to help the model retain information
about the image at several spatial resolutions. These skip-
connections are similar to the refinement-modules introduced in
[6]. They make it possible to attain both object-level informa-
tion from the upper layers of the network, as well as pixel-level
information from the lower layers.

The recurrent neural network

The RNN-component of SplineRNN is a two-layer ConvLSTM
[7] that at each time-step outputs a control point. Since a spline
control polygon can be considered a “sequence in time”, the
problem of predicting a control polygon can be seen as a spatio-
temporal prediction problem, and this motivates the use of a
ConvLSTM over a more classical fully connected LSTM. The
ConvLSTM retains spatial information that is lost in the fully
connected LSTM.

At any given time-step the RNN accepts as input the image
features from the CNN, as well as the first and the two last
predicted control points. Passing in the two previous control
points helps the network infer a sensible direction in which the
next control point is likely to be placed. By passing in the first
control point, the network is able to know when the control
polygon is closed, and it may stop predicting.

3 Experiments and results

In order to train the SplineRNN network, we need a data-set
of ground truth splines. We generate cubic spline approxima-
tions to the ground truth polygons from the CityScapes [4]
dataset. This gives us a set of cubic control points that we can
compare our predictions against. The spline approximations are
generated using a least-squares approach on B-spline bases with
uniformly spaced knots. The approximations are performed
iteratively until either the given tolerance is achieved, or the
maximum number of iterations is reached. In the current imple-
mentation we used a tolerance of two pixels. The control points
are generated in floating point arithmetic, but are snapped

back to the pixel grid by rounding the floating point values to
the nearest integer. In this way, the training data is input in
exactly the same format as for polygons, only that the points
are interpreted as spline control points rather than vertices of a
polygon.

Any spline is parametrized in terms of a sequence of non-
decreasing numbers. This sequence is called the knot vector.
The choice of knot vector has a large impact on the shape of
the resulting spline curve (see Figure 3). The current iteration
of SplineRNN employs uniform knot vectors. We also restrict
our attention to cubic splines in this first implementation.

Initial qualitative results of our method seem promising. A
sample predicted spline and the corresponding ground truth
spline can be seen in Figure 2.

4 Future work

As mentioned above, in the current implementation we restrict
ourselves to cubic splines on uniform knot vectors. In future
iterations we would like to include prediction of the knot vector
corresponding to the predicted spline coe�cients in the network
architecture. By incorporating this parametrization of the
spline curves directly in the network we can utilize the full set
of geometric properties that splines have to o↵er.

The extension to non-uniform knot vectors also applies to
the generation of the ground truth spline approximations. We
expect better results by allowing non-uniform refinement with
fewer control points required to approximate the geometry. By
also including multiplicities in the knot vector, the continuity
of the spline can be reduced, allowing kinks in the geometry to
also be accurately reproduced. Uniform knots were chosen in
order to obtain initial results, but they typically result in many
more control points being generated than necessary, as can be
seen in the sample ground truth spline in Figure 2.

We would also like to incorporate SplineRNN in an interac-
tive setting, as done for PolygonRNN and PolygonRNN++.
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Figure 1: The proposed SplineRNN network architecture. An image is fed to the modified VGG-16, and a set of image features
are extracted. These features are then passed as input into the RNN at each time-step, along with the first, and two previously
predicted control points. The current iteration of the network does not feature the knot vector prediction branch. The network is
therefore similar to the original PolygonRNN network. By incorporating knot vector prediction, we hope to be able to model
sharper geometric features than what is made possible with the current rendition of the network.

Figure 2: A sample prediction from the SplineRNN network. The predicted spline manages to follow the general outline of the car.
It does however not manage to capture the small features like the outside rear-view mirror. Furthermore, note how the network
places a fair amount of control points in order to get around curved features. This has to do with the parametrization of splines. In
the current iteration of SplineRNN we are using uniform knot vectors for both the ground truth spline approximation, and the
predicted splines.
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Figure 3: Two quadratic spline curves sharing the same control points but with di↵erent choices of knot vectors. The left curve
has uniform knots, and the right curve has non-uniform knots. This image showcases the e↵ect of choosing knot vectors on the
resulting spline curve. By repeating knots, we are also able to model sharp creases in the geometry (as in the curve to the right).
In the future, we would like SplineRNN to also predict the spline parametrization along with the control points of the spline. This
will allow such sharp features to be modelled accurately.
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